Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
Phys Rev Lett. 2013 Jul 19;111(3):030502. doi: 10.1103/PhysRevLett.111.030502. Epub 2013 Jul 15.
We investigate the most general notion of a private quantum code, which involves the encoding of qubits into quantum subsystems and subspaces. We contribute to the structure theory for private quantum codes by deriving testable conditions for private quantum subsystems in terms of Kraus operators for channels, establishing an analogue of the Knill-Laflamme conditions in this setting. For a large class of naturally arising quantum channels, we show that private subsystems can exist even in the absence of private subspaces. In doing so, we also discover the first examples of private subsystems that are not complemented by operator quantum error correcting codes, implying that the complementarity of private codes and quantum error correcting codes fails for the general notion of private quantum subsystems.
我们研究了一种最一般的私有量子码的概念,它涉及到将量子位编码到量子子系统和子空间中。我们通过用信道的克劳乌斯算子来表述私有量子子系统的可测试条件,为私有量子码的结构理论做出了贡献,在这种情况下建立了 Knill-Laflamme 条件的类似物。对于一大类自然出现的量子信道,我们表明即使没有私有子空间,私有子系统也可以存在。在这样做的过程中,我们还发现了第一个不是由算子量子纠错码补充的私有子系统的例子,这意味着私有码和量子纠错码的互补性在一般意义上的私有量子子系统中是不成立的。