Quiroz Gregory, Pokharel Bibek, Boen Joseph, Tewala Lina, Tripathi Vinay, Williams Devon, Wu Lian-Ao, Titum Paraj, Schultz Kevin, Lidar Daniel
Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, United States of America.
William H. Miller III Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD 21218, United States of America.
Rep Prog Phys. 2024 Aug 14;87(9). doi: 10.1088/1361-6633/ad6805.
Decoherence-free subspaces and subsystems (DFS) preserve quantum information by encoding it into symmetry-protected states unaffected by decoherence. An inherent DFS of a given experimental system may not exist; however, through the use of dynamical decoupling (DD), one can induce symmetries that support DFSs. Here, we provide the first experimental demonstration of DD-generated decoherence-free subsystem logical qubits. Utilizing IBM Quantum superconducting processors, we investigate two and three-qubit DFS codes comprising up to six and seven noninteracting logical qubits, respectively. Through a combination of DD and error detection, we show that DFS logical qubits can achieve up to a 23% improvement in state preservation fidelity over physical qubits subject to DD alone. This constitutes a beyond-breakeven fidelity improvement for DFS-encoded qubits. Our results showcase the potential utility of DFS codes as a pathway toward enhanced computational accuracy via logical encoding on quantum processors.
无退相干子空间和子系统(DFS)通过将量子信息编码到不受退相干影响的对称保护态中来保存量子信息。给定实验系统的固有DFS可能不存在;然而,通过使用动态解耦(DD),可以诱导出支持DFS的对称性。在这里,我们首次通过实验证明了由DD生成的无退相干子系统逻辑量子比特。利用IBM量子超导处理器,我们研究了分别包含多达六个和七个非相互作用逻辑量子比特的两比特和三比特DFS码。通过结合DD和错误检测,我们表明,与仅受DD作用的物理量子比特相比,DFS逻辑量子比特在状态保存保真度上可提高高达23%。这构成了DFS编码量子比特超出盈亏平衡点的保真度提升。我们的结果展示了DFS码作为一种通过量子处理器上的逻辑编码提高计算精度的途径的潜在效用。