Berlin University of Technology, 10623 Berlin, Germany.
Phys Rev Lett. 2013 Jul 19;111(3):034301. doi: 10.1103/PhysRevLett.111.034301. Epub 2013 Jul 17.
In this Letter, we study the friction between a one-dimensional elastomer and a one-dimensional rigid body having a randomly rough surface. The elastomer is modeled as a simple Kelvin body and the surface as self-affine fractal having a Hurst exponent H in the range from 0 to 1. The resulting frictional force as a function of velocity always shows a typical structure: it first increases linearly, achieves a plateau and finally drops to another constant level. The coefficient of friction on the plateau depends only weakly on the normal force. At lower velocities, the coefficient of friction depends on two dimensionless combinations of normal force, sliding velocity, shear modulus, viscosity, rms roughness, rms surface gradient, the linear size of the system, and the Hurst exponent. We discuss the physical nature of different regions of the law of friction and suggest an analytical relation describing the coefficient of friction in a wide range of loading conditions. An important implication of the analytical result is the extension of the well-known "master curve procedure" to the dependencies on the normal force and the size of the system.
在这封信中,我们研究了一维弹性体和具有随机粗糙表面的一维刚体之间的摩擦。弹性体被建模为简单的 Kelvin 体,表面为自仿射分形,Hurst 指数 H 在 0 到 1 的范围内。作为速度函数的摩擦力总是呈现出典型的结构:它首先线性增加,达到一个平台,最后下降到另一个恒定水平。平台上的摩擦系数仅与法向力弱相关。在较低的速度下,摩擦系数取决于法向力、滑动速度、剪切模量、粘度、均方根粗糙度、均方根表面梯度、系统的线性尺寸和 Hurst 指数的两个无量纲组合。我们讨论了摩擦定律不同区域的物理性质,并提出了一个描述在广泛的加载条件下摩擦系数的分析关系。分析结果的一个重要含义是将著名的“主曲线过程”扩展到对法向力和系统尺寸的依赖关系。