Popov Valentin L, Voll Lars, Li Qiang, Chai Young S, Popov Mikhail
Berlin University of Technology, 10623 Berlin, Germany.
Yeungnam University, School of Mechanical Engineering, Gyongsan, 712-749, South Korea.
Sci Rep. 2014 Jan 17;4:3750. doi: 10.1038/srep03750.
In this paper, we study theoretically and experimentally the friction between a rough parabolic or conical profile and a flat elastomer beyond the validity region of Amontons' law. The roughness is assumed to be randomly self-affine with a Hurst exponent H in the range from 0 to 1. We first consider a simple Kelvin body and then generalize the results to media with arbitrary linear rheology. The resulting frictional force as a function of velocity shows the same qualitative behavior as in the case of planar surfaces: it increases monotonically before reaching a plateau. However, the dependencies on normal force, sliding velocity, shear modulus, viscosity, rms roughness, rms surface gradient and the Hurst exponent are different for different macroscopic shapes. We suggest analytical relations describing the coefficient of friction in a wide range of loading conditions and suggest a master curve procedure for the dependence on the normal force. Experimental investigation of friction between a steel ball and a polyurethane rubber for different velocities and normal forces confirms the proposed master curve procedure.
在本文中,我们对粗糙抛物线形或圆锥形轮廓与扁平弹性体之间的摩擦进行了理论和实验研究,该摩擦超出了阿蒙顿定律的有效范围。假定粗糙度为随机自仿射,赫斯特指数H在0到1的范围内。我们首先考虑一个简单的开尔文体,然后将结果推广到具有任意线性流变学的介质。作为速度函数的所得摩擦力显示出与平面情况相同的定性行为:在达到平稳期之前单调增加。然而,对于不同的宏观形状,其对法向力、滑动速度、剪切模量、粘度、均方根粗糙度、均方根表面梯度和赫斯特指数的依赖性是不同的。我们提出了描述广泛加载条件下摩擦系数的解析关系,并提出了一种关于法向力依赖性的主曲线程序。对不同速度和法向力下钢球与聚氨酯橡胶之间摩擦的实验研究证实了所提出的主曲线程序。