Suppr超能文献

MedTime:一个用于临床叙述的时间信息提取系统。

MedTime: a temporal information extraction system for clinical narratives.

机构信息

Department of Management Information Systems, University of Arizona, Tucson, AZ 85721, USA.

Department of Management Information Systems, University of Arizona, Tucson, AZ 85721, USA.

出版信息

J Biomed Inform. 2013 Dec;46 Suppl:S20-S28. doi: 10.1016/j.jbi.2013.07.012. Epub 2013 Jul 31.

Abstract

Temporal information extraction from clinical narratives is of critical importance to many clinical applications. We participated in the EVENT/TIMEX3 track of the 2012 i2b2 clinical temporal relations challenge, and presented our temporal information extraction system, MedTime. MedTime comprises a cascade of rule-based and machine-learning pattern recognition procedures. It achieved a micro-averaged f-measure of 0.88 in both the recognitions of clinical events and temporal expressions. We proposed and evaluated three time normalization strategies to normalize relative time expressions in clinical texts. The accuracy was 0.68 in normalizing temporal expressions of dates, times, durations, and frequencies. This study demonstrates and evaluates the integration of rule-based and machine-learning-based approaches for high performance temporal information extraction from clinical narratives.

摘要

从临床叙述中提取时间信息对于许多临床应用至关重要。我们参加了 2012 年 i2b2 临床时间关系挑战赛的 EVENT/TIMEX3 轨道,并展示了我们的时间信息提取系统 MedTime。MedTime 由一系列基于规则和基于机器学习的模式识别过程组成。它在临床事件和时间表达式的识别中均实现了微平均 F1 测量值为 0.88。我们提出并评估了三种时间规范化策略,以规范化临床文本中的相对时间表达式。规范化日期、时间、持续时间和频率的时间表达式的准确率为 0.68。这项研究展示和评估了基于规则和基于机器学习的方法在从临床叙述中提取高性能时间信息方面的集成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验