Wang Liwei, Wampfler Jason, Dispenzieri Angela, Xu Hua, Yang Ping, Liu Hongfang
Mayo Clinic, Rochester, MN, USA.
The University of Texas Health Science Center at Houston, Houston, TX, USA.
AMIA Annu Symp Proc. 2020 Mar 4;2019:893-902. eCollection 2019.
Accurate identification of temporal information such as date is crucial for advancing cancer research which often requires precise date information associated with related cancer events. However, there is a gap for existing natural language processing (NLP) systems to identify dates for specific cancer research studies. Illustrated with two case studies, we investigated the feasibility, evaluated the performances and discussed the challenges of date information extraction for cancer research.
准确识别日期等时间信息对于推进癌症研究至关重要,因为癌症研究通常需要与相关癌症事件相关的精确日期信息。然而,现有的自然语言处理(NLP)系统在识别特定癌症研究中的日期方面存在差距。通过两个案例研究,我们调查了可行性,评估了性能,并讨论了癌症研究中日期信息提取的挑战。