State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
Analyst. 2013 Oct 7;138(19):5777-82. doi: 10.1039/c3an01042b.
With the advantages of in situ analysis and high surface sensitivity, surface-enhanced infrared absorption spectroscopy in attenuated total reflection mode (ATR-SEIRAS) combined with electrochemical methods has been employed to examine the interfacial direct electron transfer activity and adsorption kinetics of cytochrome c (cyt c). This work presents data on cyt c adsorption onto negatively charged mercaptohexanoic acid (MHA) and positively charged 6-amino-1-hexanethiol (MHN) self-assembled monolayers (SAMs) on gold nanofilm surfaces. The adsorbed cyt c displays a higher apparent electron transfer rate constant (33.5 ± 2.4 s(-1)) and apparent binding rate constant (73.1 ± 5.2 M(-1) s(-1)) at the MHA SAMs surface than those on the MHN SAMs surface. The results demonstrate that the surface charge density determines the protein adsorption kinetics, while the surface charge character determines the conformation and orientation of proteins assembled which in turn affects the direct electron transfer activity.
采用具有原位分析和高表面灵敏度优势的衰减全反射表面增强红外吸收光谱(ATR-SEIRAS)结合电化学方法,研究了细胞色素 c(cyt c)的界面直接电子转移活性和吸附动力学。本工作提供了关于细胞色素 c 在带负电荷的巯基己酸(MHA)和带正电荷的 6-氨基-1-己硫醇(MHN)自组装单层(SAM)上吸附到金纳米薄膜表面的实验数据。与在 MHN SAM 表面上相比,吸附在 MHA SAM 表面上的细胞色素 c 表现出更高的表观电子转移速率常数(33.5 ± 2.4 s(-1))和表观结合速率常数(73.1 ± 5.2 M(-1) s(-1))。结果表明,表面电荷密度决定了蛋白质的吸附动力学,而表面电荷特性决定了组装蛋白质的构象和取向,进而影响直接电子转移活性。