Suppr超能文献

用于重症患儿癫痫识别的密度谱数组。

Density spectral array for seizure identification in critically ill children.

机构信息

Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.

出版信息

J Clin Neurophysiol. 2013 Aug;30(4):371-5. doi: 10.1097/WNP.0b013e31829de01c.

Abstract

PURPOSE

We evaluated the validity and interrater reliability of encephalographer interpretation of color density spectral array EEG for seizure identification was evaluated in critically ill children and explored predictors of accurate seizure identification.

METHODS

Conventional EEG tracings from 21 consecutive critically ill children were scored for electrographic seizures. Four 2-hour long segments from each subject were converted to 8-channel color density spectral array displays, yielding 84 images. Eight encephalographers received color density spectral array training and circled elements thought to represent seizures. Images were reviewed in random order (Group A) or with information regarding seizure presence in the initial 30 minutes and with subject images in order (Group B). Sensitivity, specificity, and interrater reliability were calculated. Factors associated with color density spectral array seizure identification were assessed.

RESULTS

Seizure prevalence was 43% on conventional EEG. Specificity was significantly higher for Group A than Group B (92.3% vs. 78.2%, P < 0.00). Sensitivity was not significantly different between Groups A and B (64.8% vs. 75%, P = 0.22). Interrater reliability was moderate in both groups. Ten percent of images were falsely classified as containing a seizure. Seizure duration ≥2 minutes predicted identification (P < 0.001).

CONCLUSIONS

Color density spectral array may be a useful screening tool for seizure identification by encephalographers, but it does not identify all seizures and false positives occur.

摘要

目的

我们评估了脑电描记师对危重患儿彩色密度谱脑电图(EEG)发作识别的解释的有效性和组内一致性,并探讨了准确识别发作的预测因素。

方法

对 21 例连续的危重症患儿的常规 EEG 描记进行了电发作评分。每位患者的 4 个 2 小时长的片段被转换为 8 通道彩色密度谱脑电图显示,产生 84 个图像。8 位脑电描记师接受了彩色密度谱脑电图培训,并圈出了他们认为代表发作的元素。图像以随机顺序(A 组)或根据前 30 分钟内发作的存在信息以及患者图像的顺序(B 组)进行回顾。计算了敏感性、特异性和组内一致性。评估了与彩色密度谱脑电图发作识别相关的因素。

结果

常规 EEG 上的发作率为 43%。A 组的特异性明显高于 B 组(92.3% vs. 78.2%,P < 0.001)。A 组和 B 组的敏感性无显著差异(64.8% vs. 75%,P = 0.22)。两组的组内一致性均为中等。10%的图像被错误地归类为包含发作。发作持续时间≥2 分钟可预测识别(P < 0.001)。

结论

彩色密度谱脑电图可能是脑电描记师识别发作的有用筛查工具,但它不能识别所有发作,并且会出现假阳性。

相似文献

5
Seizure identification in the ICU using quantitative EEG displays.使用定量脑电图显示在 ICU 中识别癫痫发作。
Neurology. 2010 Oct 26;75(17):1501-8. doi: 10.1212/WNL.0b013e3181f9619e. Epub 2010 Sep 22.

引用本文的文献

3

本文引用的文献

3
Seizures in 204 comatose children: incidence and outcome.204 例昏迷患儿的惊厥发作:发生率和转归。
Intensive Care Med. 2012 May;38(5):853-62. doi: 10.1007/s00134-012-2529-9. Epub 2012 Apr 11.
4
Nonconvulsive status epilepticus: the encephalopathic pediatric patient.非惊厥性癫痫持续状态:脑病患儿。
Pediatrics. 2012 Mar;129(3):e748-55. doi: 10.1542/peds.2011-2067. Epub 2012 Feb 13.
5
Continuous EEG monitoring in Kenyan children with non-traumatic coma.肯尼亚非创伤性昏迷儿童的连续脑电图监测。
Arch Dis Child. 2012 Apr;97(4):343-9. doi: 10.1136/archdischild-2011-300935. Epub 2012 Feb 10.
7
Predictors of nonconvulsive seizures among critically ill children.危重病患儿非惊厥性癫痫发作的预测因素。
Epilepsia. 2011 Nov;52(11):1973-8. doi: 10.1111/j.1528-1167.2011.03291.x. Epub 2011 Oct 17.
8
Continuous video-EEG monitoring in pediatric intensive care units.儿科重症监护病房的连续视频-脑电图监测。
Epilepsia. 2011 Jun;52(6):1130-6. doi: 10.1111/j.1528-1167.2011.03070.x. Epub 2011 Apr 19.
9
Nonconvulsive seizures are common in critically ill children.非惊厥性发作在危重症患儿中很常见。
Neurology. 2011 Mar 22;76(12):1071-7. doi: 10.1212/WNL.0b013e318211c19e. Epub 2011 Feb 9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验