Makaram Navaneethakrishna, Gupta Sarvagya, Pesce Matthew, Bolton Jeffrey, Stone Scellig, Haehn Daniel, Pomplun Marc, Papadelis Christos, Pearl Phillip, Rotenberg Alexander, Grant Patricia Ellen, Tamilia Eleonora
Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
Algorithms. 2023 Dec;16(12). doi: 10.3390/a16120567. Epub 2023 Dec 15.
In drug-resistant epilepsy, a visual inspection of intracranial electroencephalography (iEEG) signals is often needed to localize the epileptogenic zone (EZ) and guide neurosurgery. The visual assessment of iEEG time-frequency (TF) images is an alternative to signal inspection, but subtle variations may escape the human eye. Here, we propose a deep learning-based metric of visual complexity to interpret TF images extracted from iEEG data and aim to assess its ability to identify the EZ in the brain. We analyzed interictal iEEG data from 1928 contacts recorded from 20 children with drug-resistant epilepsy who became seizure-free after neurosurgery. We localized each iEEG contact in the MRI, created TF images (1-70 Hz) for each contact, and used a pre-trained VGG16 network to measure their visual complexity by extracting unsupervised activation energy (UAE) from 13 convolutional layers. We identified points of interest in the brain using the UAE values via patient- and layer-specific thresholds (based on extreme value distribution) and using a support vector machine classifier. Results show that contacts inside the seizure onset zone exhibit lower UAE than outside, with larger differences in deep layers (L10, L12, and L13: < 0.001). Furthermore, the points of interest identified using the support vector machine, localized the EZ with 7 mm accuracy. In conclusion, we presented a pre-surgical computerized tool that facilitates the EZ localization in the patient's MRI without requiring long-term iEEG inspection.
在耐药性癫痫中,通常需要对颅内脑电图(iEEG)信号进行目视检查,以定位癫痫发作起始区(EZ)并指导神经外科手术。对iEEG时频(TF)图像进行视觉评估是信号检查的一种替代方法,但细微的变化可能会逃过肉眼的观察。在此,我们提出一种基于深度学习的视觉复杂度度量方法,用于解释从iEEG数据中提取的TF图像,并旨在评估其识别大脑中EZ的能力。我们分析了20例耐药性癫痫儿童的1928个电极触点的发作间期iEEG数据,这些儿童在接受神经外科手术后无癫痫发作。我们在磁共振成像(MRI)中定位每个iEEG电极触点,为每个触点创建TF图像(1 - 70赫兹),并使用预训练的VGG16网络通过从13个卷积层提取无监督激活能量(UAE)来测量其视觉复杂度。我们通过基于患者和层特异性阈值(基于极值分布)的UAE值以及使用支持向量机分类器来识别大脑中的感兴趣点。结果表明,癫痫发作起始区内的电极触点显示出比区外更低的UAE,在深层(L10、L12和L13:<0.001)差异更大。此外,使用支持向量机识别出的感兴趣点将EZ定位的准确率达到7毫米。总之,我们提出了一种术前计算机化工具,无需长期的iEEG检查即可在患者的MRI中促进EZ定位。