Department of Biomedical Sciences and Public Health, School of Medicine, University Politecnica of Marche, Ancona, Italy (S.M., S.Ar., P.C., A.A.N., S.Am., V.L.); Department of Experimental Medicine, Second University of Naples, Naples, Italy (L.B., E.P.); and Department of Clinical and Molecular Biomedicine, School of Medicine, University of Catania, Catania, Italy (R.B.).
Mol Pharmacol. 2013 Oct;84(4):603-14. doi: 10.1124/mol.113.087775. Epub 2013 Aug 2.
It is known that glutamate (Glu), the major excitatory amino acid in the central nervous system, can be an essential source for cell energy metabolism. Here we investigated the role of the plasma membrane Na(+)/Ca(2+) exchanger (NCX) and the excitatory amino acid transporters (EAATs) in Glu uptake and recycling mechanisms leading to ATP synthesis. We used different cell lines, such as SH-SY5Y neuroblastoma, C6 glioma and H9c2 as neuronal, glial, and cardiac models, respectively. We first observed that Glu increased ATP production in SH-SY5Y and C6 cells. Pharmacological inhibition of either EAAT or NCX counteracted the Glu-induced ATP synthesis. Furthermore, Glu induced a plasma membrane depolarization and an intracellular Ca(2+) increase, and both responses were again abolished by EAAT and NCX blockers. In line with the hypothesis of a mutual interplay between the activities of EAAT and NCX, coimmunoprecipitation studies showed a physical interaction between them. We expanded our studies on EAAT/NCX interplay in the H9c2 cells. H9c2 expresses EAATs but lacks endogenous NCX1 expression. Glu failed to elicit any significant response in terms of ATP synthesis, cell depolarization, and Ca(2+) increase unless a functional NCX1 was introduced in H9c2 cells by stable transfection. Moreover, these responses were counteracted by EAAT and NCX blockers, as observed in SH-SY5Y and C6 cells. Collectively, these data suggest that plasma membrane EAAT and NCX are both involved in Glu-induced ATP synthesis, with NCX playing a pivotal role.
已知谷氨酸(Glu)是中枢神经系统中的主要兴奋性氨基酸,它可以成为细胞能量代谢的重要来源。在这里,我们研究了质膜 Na(+)/Ca(2+)交换器(NCX)和兴奋性氨基酸转运体(EAATs)在 Glu 摄取和回收机制中的作用,这些机制导致 ATP 的合成。我们使用了不同的细胞系,如 SH-SY5Y 神经母细胞瘤、C6 神经胶质瘤和 H9c2 作为神经元、神经胶质和心脏模型。我们首先观察到 Glu 增加了 SH-SY5Y 和 C6 细胞中的 ATP 产生。EAAT 或 NCX 的药理学抑制均能抵消 Glu 诱导的 ATP 合成。此外,Glu 诱导质膜去极化和细胞内 Ca(2+)增加,这两种反应均被 EAAT 和 NCX 阻断剂消除。与 EAAT 和 NCX 活性之间相互作用的假说一致,共免疫沉淀研究表明它们之间存在物理相互作用。我们在 H9c2 细胞中扩展了我们关于 EAAT/NCX 相互作用的研究。H9c2 表达 EAAT,但缺乏内源性 NCX1 表达。除非通过稳定转染将功能性 NCX1 引入 H9c2 细胞,否则 Glu 无法在 ATP 合成、细胞去极化和 Ca(2+)增加方面引起任何显著反应。此外,正如在 SH-SY5Y 和 C6 细胞中观察到的那样,这些反应被 EAAT 和 NCX 阻断剂所抵消。总的来说,这些数据表明质膜 EAAT 和 NCX 都参与了 Glu 诱导的 ATP 合成,NCX 起着关键作用。