Suppr超能文献

缓慢、快速和剧烈:理解植物运动的物理学原理。

Slow, fast and furious: understanding the physics of plant movements.

机构信息

IUSTI, CNRS UMR 7343, Université d'Aix-Marseille, 5 rue Enrico Fermi, 13453 Marseille cedex 13, France.

出版信息

J Exp Bot. 2013 Nov;64(15):4745-60. doi: 10.1093/jxb/ert230. Epub 2013 Aug 3.

Abstract

The ability of plants to move is central to many physiological processes from development to tropisms, from nutrition to reproduction. The movement of plants or plant parts occurs over a wide range of sizes and time scales. This review summarizes the main physical mechanisms plants use to achieve motility, highlighting recent work at the frontier of biology and physics on rapid movements. Emphasis is given to presenting in a single framework pioneering biological studies of water transport and growth with more recent physics research on poroelasticity and mechanical instabilities. First, the basic osmotic and hydration/dehydration motors are described that contribute to movement by growth and reversible swelling/shrinking of cells and tissues. The speeds of these water-driven movements are shown to be ultimately limited by the transport of water through the plant body. Some plant structures overcome this hydraulic limit to achieve much faster movement by using a mechanical instability. The principle is to impose an 'energy barrier' to the system, which can originate from geometrical constraint or matter cohesion, allowing elastic potential energy to be stored until the barrier is overcome, then rapidly transformed into kinetic energy. Three of these rapid motion mechanisms have been elucidated recently and are described here: the snapping traps of two carnivorous plants, the Venus flytrap and Utricularia, and the catapult of fern sporangia. Finally, movement mechanisms are reconsidered in the context of the timescale of important physiological processes at the cellular and molecular level.

摘要

植物的运动能力对于从发育到向性、从营养到繁殖等许多生理过程都至关重要。植物或植物部分的运动发生在广泛的大小和时间尺度上。这篇综述总结了植物用于实现运动的主要物理机制,重点介绍了生物学和物理学前沿在快速运动方面的最新工作。强调以单个框架呈现水运输和生长的开创性生物学研究,以及最近关于多孔弹性和力学不稳定性的物理学研究。首先,描述了基本的渗透和水合/脱水马达,这些马达通过细胞和组织的生长和可逆膨胀/收缩来促进运动。这些水驱动运动的速度最终受到通过植物本体运输水的限制。一些植物结构通过使用机械不稳定性来克服这种液压限制,从而实现更快的运动。其原理是对系统施加“能量障碍”,该障碍可以源自几何约束或物质内聚,从而允许弹性势能被储存,直到障碍被克服,然后迅速转化为动能。最近已经阐明了其中三种快速运动机制,并在此进行描述:两种食虫植物,即维纳斯捕蝇草和狸藻的捕虫器,以及蕨类植物孢子囊的弹弓。最后,根据细胞和分子水平上重要生理过程的时间尺度重新考虑运动机制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验