Gran Sasso Science Institute, L'Aquila, Italy.
AMAP, Univ Montpellier, CIRAD, CNRS, INRAe, IRD, Montpellier, France.
Sci Rep. 2024 Aug 6;14(1):18222. doi: 10.1038/s41598-024-62147-3.
A plant's structure is the result of constant adaptation and evolution to the surrounding environment. From this perspective, our goal is to investigate the mass and radius distribution of a particular plant organ, namely the searcher shoot, by providing a Reinforcement Learning (RL) environment, that we call Searcher-Shoot, which considers the mechanics due to the mass of the shoot and leaves. We uphold the hypothesis that plants maximize their length, avoiding a maximal stress threshold. To do this, we explore whether the mass distribution along the stem is efficient, formulating a Markov Decision Process. By exploiting this strategy, we are able to mimic and thus study the plant's behavior, finding that shoots decrease their diameters smoothly, resulting in an efficient distribution of the mass. The strong accordance between our results and the experimental data allows us to remark on the strength of our approach in the analysis of biological systems traits.
植物的结构是其对周围环境不断适应和进化的结果。从这个角度来看,我们的目标是通过提供一个名为 Searcher-Shoot 的强化学习 (RL) 环境来研究特定植物器官的质量和半径分布,该环境考虑了由于shoot 和叶子的质量而产生的力学。我们假设植物最大限度地延长其长度,避免达到最大应力阈值。为此,我们探索了沿着茎的质量分布是否有效,从而构建了一个马尔可夫决策过程。通过利用这种策略,我们能够模拟并研究植物的行为,发现shoot 会平滑地减小其直径,从而实现质量的有效分布。我们的结果与实验数据之间的高度一致性,使我们能够强调我们的方法在分析生物系统特征方面的优势。