Suppr超能文献

关于单室模型拟合的一则注释:使用变换后数据的非线性最小二乘法与线性最小二乘法

A note on fitting one-compartment models: non-linear least squares versus linear least squares using transformed data.

作者信息

Bailer A J, Portier C J

机构信息

Department of Mathematics and Statistics, Miami University, Oxford, OH 45056.

出版信息

J Appl Toxicol. 1990 Aug;10(4):303-6. doi: 10.1002/jat.2550100413.

Abstract

Drug concentrations in one-compartment systems are frequently modeled using a single exponential function. Two methods of estimation are commonly used for determining the parameters of such a model. In the first method, non-linear least-squares regression is used to calculate the parameters. In the second method, the data are first transformed by a logarithmic function, and then the log-concentration data are fit using linear least-squares regression. The assumptions for fitting these models are discussed with special emphasis on which data points are most influential in determining parameter values. The similarities between fitting a linear regression model to the log-concentration data and fitting a weighted regression model to the original data are noted. An example is presented that illustrates the differences in fitting a model to the log-transformed data versus fitting unweighted and weighted models to the original-scale data.

摘要

单室系统中的药物浓度通常使用单一指数函数进行建模。通常使用两种估计方法来确定此类模型的参数。在第一种方法中,使用非线性最小二乘回归来计算参数。在第二种方法中,数据首先通过对数函数进行变换,然后使用线性最小二乘回归对对数浓度数据进行拟合。讨论了拟合这些模型的假设,并特别强调了哪些数据点在确定参数值时最具影响力。指出了将线性回归模型拟合到对数浓度数据与将加权回归模型拟合到原始数据之间的相似性。给出了一个示例,说明了将模型拟合到对数变换后的数据与将未加权和加权模型拟合到原始尺度数据之间的差异。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验