Suppr超能文献

蛋白质折叠中的局部运动与全局运动

Local vs global motions in protein folding.

作者信息

Maisuradze Gia G, Liwo Adam, Senet Patrick, Scheraga Harold A

机构信息

Baker Laboratory of Chemistry and Chemical Biology, Cornell University Ithaca, New York 14853-1301.

出版信息

J Chem Theory Comput. 2013 Jul 9;9(7):2907-2921. doi: 10.1021/ct4001558.

Abstract

It is of interest to know whether local fluctuations in a polypeptide chain play any role in the mechanism by which the chain folds to the native structure of a protein. This question is addressed by analyzing folding and non-folding trajectories of a protein; as an example, the analysis is applied to the 37-residue triple β-strand WW domain from the Formin binding protein 28 (FBP28) (PDB ID: 1E0L). Molecular dynamics (MD) trajectories were generated with the coarse-grained united-residue force field, and one- and two-dimensional free-energy landscapes (FELs) along the backbone virtual-bond angle θ and backbone virtual-bond-dihedral angle γ of each residue, and principal components, respectively, were analyzed. The key residues involved in the folding of the FBP28 WW domain are elucidated by this analysis. The correlations between local and global motions are found. It is shown that most of the residues in the folding trajectories of the system studied here move in a concerted fashion, following the dynamics of the whole system. This demonstrates how the choice of a pathway has to involve concerted movements in order for this protein to fold. This finding also sheds light on the effectiveness of principal component analysis (PCA) for the description of the folding dynamics of the system studied. It is demonstrated that the FEL along the PCs, computed by considering only several critically-placed residues, can correctly describe the folding dynamics.

摘要

了解多肽链中的局部波动是否在该链折叠成蛋白质天然结构的机制中发挥任何作用是很有意义的。通过分析蛋白质的折叠和非折叠轨迹来解决这个问题;例如,将该分析应用于来自formin结合蛋白28(FBP28)的37个残基的三股β链WW结构域(PDB ID:1E0L)。使用粗粒度的联合残基力场生成分子动力学(MD)轨迹,并分别沿着每个残基的主链虚拟键角θ和主链虚拟键二面角γ以及主成分分析一维和二维自由能景观(FEL)。通过该分析阐明了FBP28 WW结构域折叠过程中涉及的关键残基。发现了局部运动和全局运动之间的相关性。结果表明,这里研究的系统折叠轨迹中的大多数残基以协同方式移动,遵循整个系统的动力学。这表明为了使这种蛋白质折叠,途径的选择必须涉及协同运动。这一发现也揭示了主成分分析(PCA)在描述所研究系统的折叠动力学方面的有效性。结果表明,通过仅考虑几个关键位置的残基计算得到的沿主成分的自由能景观可以正确描述折叠动力学。

相似文献

1
Local vs global motions in protein folding.
J Chem Theory Comput. 2013 Jul 9;9(7):2907-2921. doi: 10.1021/ct4001558.
2
Investigation of protein folding by coarse-grained molecular dynamics with the UNRES force field.
J Phys Chem A. 2010 Apr 8;114(13):4471-85. doi: 10.1021/jp9117776.
3
Principal component analysis for protein folding dynamics.
J Mol Biol. 2009 Jan 9;385(1):312-29. doi: 10.1016/j.jmb.2008.10.018. Epub 2008 Oct 15.
4
Relation between free energy landscapes of proteins and dynamics.
J Chem Theory Comput. 2010 Feb 9;6(2):583-595. doi: 10.1021/ct9005745.
5
How adequate are one- and two-dimensional free energy landscapes for protein folding dynamics?
Phys Rev Lett. 2009 Jun 12;102(23):238102. doi: 10.1103/PhysRevLett.102.238102.
6
Folding kinetics of WW domains with the united residue force field for bridging microscopic motions and experimental measurements.
Proc Natl Acad Sci U S A. 2014 Dec 23;111(51):18243-8. doi: 10.1073/pnas.1420914111. Epub 2014 Dec 8.
7
Effects of mutation, truncation, and temperature on the folding kinetics of a WW domain.
J Mol Biol. 2012 Jul 20;420(4-5):350-65. doi: 10.1016/j.jmb.2012.04.027. Epub 2012 May 2.
8
Preventing fibril formation of a protein by selective mutation.
Proc Natl Acad Sci U S A. 2015 Nov 3;112(44):13549-54. doi: 10.1073/pnas.1518298112. Epub 2015 Oct 19.
9
Elucidating Important Sites and the Mechanism for Amyloid Fibril Formation by Coarse-Grained Molecular Dynamics.
ACS Chem Neurosci. 2017 Jan 18;8(1):201-209. doi: 10.1021/acschemneuro.6b00331. Epub 2016 Nov 18.
10
Statistical Model To Decipher Protein Folding/Unfolding at a Local Scale.
J Phys Chem B. 2018 Apr 5;122(13):3540-3549. doi: 10.1021/acs.jpcb.7b10733. Epub 2018 Feb 28.

引用本文的文献

2
In Silico Evaluation of Cyclophilin Inhibitors as Potential Treatment for SARS-CoV-2.
Open Forum Infect Dis. 2021 Apr 14;8(6):ofab189. doi: 10.1093/ofid/ofab189. eCollection 2021 Jun.
3
Investigation of Phosphorylation-Induced Folding of an Intrinsically Disordered Protein by Coarse-Grained Molecular Dynamics.
J Chem Theory Comput. 2021 May 11;17(5):3203-3220. doi: 10.1021/acs.jctc.1c00155. Epub 2021 Apr 28.
4
From a Highly Disordered to a Metastable State: Uncovering Insights of α-Synuclein.
ACS Chem Neurosci. 2018 May 16;9(5):1051-1065. doi: 10.1021/acschemneuro.7b00446. Epub 2018 Feb 26.
5
Sequence-, structure-, and dynamics-based comparisons of structurally homologous CheY-like proteins.
Proc Natl Acad Sci U S A. 2017 Feb 14;114(7):1578-1583. doi: 10.1073/pnas.1621344114. Epub 2017 Jan 31.
6
Elucidating Important Sites and the Mechanism for Amyloid Fibril Formation by Coarse-Grained Molecular Dynamics.
ACS Chem Neurosci. 2017 Jan 18;8(1):201-209. doi: 10.1021/acschemneuro.6b00331. Epub 2016 Nov 18.
7
Intrinsic Localized Modes in Proteins.
Sci Rep. 2015 Dec 11;5:18128. doi: 10.1038/srep18128.
8
Preventing fibril formation of a protein by selective mutation.
Proc Natl Acad Sci U S A. 2015 Nov 3;112(44):13549-54. doi: 10.1073/pnas.1518298112. Epub 2015 Oct 19.
9
Folding kinetics of WW domains with the united residue force field for bridging microscopic motions and experimental measurements.
Proc Natl Acad Sci U S A. 2014 Dec 23;111(51):18243-8. doi: 10.1073/pnas.1420914111. Epub 2014 Dec 8.
10
Accounting for a mirror-image conformation as a subtle effect in protein folding.
Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):8458-63. doi: 10.1073/pnas.1407837111. Epub 2014 May 27.

本文引用的文献

1
Collective variable description of native protein dynamics.
Annu Rev Phys Chem. 1995;46:223-50. doi: 10.1146/annurev.pc.46.100195.001255.
2
Relation between free energy landscapes of proteins and dynamics.
J Chem Theory Comput. 2010 Feb 9;6(2):583-595. doi: 10.1021/ct9005745.
3
Hidden protein folding pathways in free-energy landscapes uncovered by network analysis.
J Chem Theory Comput. 2012 Apr 10;8(4):1176-1189. doi: 10.1021/ct200806n. Epub 2012 Feb 24.
4
Anomalous diffusion and dynamical correlation between the side chains and the main chain of proteins in their native state.
Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):10346-51. doi: 10.1073/pnas.1207083109. Epub 2012 Jun 11.
5
Effects of mutation, truncation, and temperature on the folding kinetics of a WW domain.
J Mol Biol. 2012 Jul 20;420(4-5):350-65. doi: 10.1016/j.jmb.2012.04.027. Epub 2012 May 2.
6
Dominant folding pathways of a WW domain.
Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2330-5. doi: 10.1073/pnas.1111796109. Epub 2012 Jan 26.
7
How fast-folding proteins fold.
Science. 2011 Oct 28;334(6055):517-20. doi: 10.1126/science.1208351.
8
Nonexponential decay of internal rotational correlation functions of native proteins and self-similar structural fluctuations.
Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):19844-9. doi: 10.1073/pnas.1013674107. Epub 2010 Nov 2.
9
Computational design and experimental testing of the fastest-folding β-sheet protein.
J Mol Biol. 2011 Jan 7;405(1):43-8. doi: 10.1016/j.jmb.2010.10.023. Epub 2010 Oct 23.
10
Atomic-level characterization of the structural dynamics of proteins.
Science. 2010 Oct 15;330(6002):341-6. doi: 10.1126/science.1187409.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验