Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States.
J Phys Chem A. 2013 Aug 29;117(34):8274-84. doi: 10.1021/jp402224t. Epub 2013 Aug 16.
Energy-resolved collision-induced dissociation (CID) of seven silver cation-ligand complexes, Ag(+)(L), with Xe is studied using guided ion beam tandem mass spectrometry techniques. The ligands, L, investigated are monomeric building blocks of polyethers and polyphenols including phenol, 2-hydroxyphenol, 3-hydroxyphenol, 4-hydroxyphenol, 2-hydroxymethyl phenol, 3-hydroxymethyl phenol, and 4-hydroxymethyl phenol. In all cases, Ag(+) is observed as the primary CID product, corresponding to endothermic loss of the intact neutral ligand. The kinetic-energy-dependent cross sections for CID of these Ag(+)(L) complexes are analyzed using an empirical threshold law to extract absolute 0 and 298 K Ag(+)-L bond dissociation energies (BDEs). Density functional theory calculations at the B3LYP/6-31G* level of theory are used to determine the structures of the neutral ligands and their complexes to Ag(+) using either the Stuttgart RSC 1997 valence basis set and effective core potential (SRSC ECP) or DZVP-DFT to describe Ag(+). Theoretical BDEs are determined at the B3LYP/6-311+G(2d,2p) level of theory again using the SRSC ECP or DZVP-DFT for Ag(+). For all systems, the most stable binding conformations found involve cation-π interactions when the SRSC ECP is used to describe Ag(+). When DZVP-DFT is employed, the most stable binding geometries remain cation-π complexes except for the complex to 2HP, where the ground-state conformer involves bidentate binding of Ag(+) to the hydroxyl oxygen atoms of both substituents. The agreement between the measured and calculated BDEs is excellent with a MAD of 2.9 ± 1.7 kJ/mol when the SRSC ECP is used to describe Ag(+) and less satisfactory for DZVP-DFT, which underestimates the strength of binding in these systems by ~14% or 26.0 ± 6.7 kJ/mol.
使用引导离子束串联质谱技术研究了七种银阳离子-配体络合物 Ag(+)(L)与 Xe 的能量分辨碰撞诱导解离(CID)。所研究的配体 L 是聚醚和多酚的单体构建块,包括苯酚、2-羟基苯酚、3-羟基苯酚、4-羟基苯酚、2-羟甲基苯酚、3-羟甲基苯酚和 4-羟甲基苯酚。在所有情况下,Ag(+) 均被观察为主要 CID 产物,对应于完整中性配体的吸热损失。使用经验阈值定律分析这些 Ag(+)(L) 络合物的 CID 动能相关截面,以提取绝对 0 和 298 K Ag(+)-L 键离解能(BDE)。在 B3LYP/6-31G*理论水平上使用密度泛函理论计算确定中性配体及其与 Ag(+) 的络合物的结构,使用斯图加特 RSC 1997 价基集和有效核势(SRSC ECP)或 DZVP-DFT 来描述 Ag(+)。再次使用 SRSC ECP 或 DZVP-DFT 为 Ag(+) 在 B3LYP/6-311+G(2d,2p)理论水平上确定理论 BDE。对于所有系统,当使用 SRSC ECP 描述 Ag(+) 时,发现最稳定的结合构象涉及阳离子-π 相互作用。当使用 DZVP-DFT 时,最稳定的结合几何形状仍然是阳离子-π 络合物,除了 2HP 的络合物,其中基态构象涉及 Ag(+) 与两个取代基的羟基氧原子的双齿配位。当使用 SRSC ECP 描述 Ag(+) 时,测量和计算的 BDE 之间具有极好的一致性,平均偏差为 2.9 ± 1.7 kJ/mol,而对于 DZVP-DFT 的一致性则不太令人满意,该方法低估了这些体系中结合的强度约 14%或 26.0 ± 6.7 kJ/mol。