Suppr超能文献

二甲醚与羟基自由基的反应:动力学同位素效应和预反应络合物形成。

Reaction of dimethyl ether with hydroxyl radicals: kinetic isotope effect and prereactive complex formation.

机构信息

Institut für Physikalische Chemie, Karlsruher Institut für Technologie, Kaiserstr. 12, 76131 Karlsruhe, Germany.

出版信息

J Phys Chem A. 2013 Sep 5;117(35):8343-51. doi: 10.1021/jp405724a. Epub 2013 Aug 20.

Abstract

The kinetic isotope effect of the reactions OH + CH3OCH3 (DME) and OH + CD3OCD3 (DME-d6) was experimentally and theoretically studied. Experiments were carried out in a slow-flow reactor at pressures between 5 and 21 bar (helium as bath gas) with production of OH by laser flash photolysis of HNO3 and time-resolved detection of OH by laser-induced fluorescence. The temperature dependences of the rate coefficients obtained can be described by the following modified Arrhenius expressions: k(OH+DME) = (4.5 ± 1.3) × 10(-16) (T/K)(1.48) exp(66.6 K/T) cm(3) s(-1) (T = 292-650 K, P = 5.9-20.9 bar) and k(OH+DME-d6) = (7.3 ± 2.2) × 10(-23) (T/K)(3.57) exp(759.8 K/T) cm(3) s(-1) (T = 387-554 K, P = 13.0-20.4 bar). A pressure dependence of the rate coefficients was not observed. The agreement of our experimental results for k(OH+DME) with values from other authors is very good, and from a fit to all available literature data, we derived the following modified Arrhenius expression, which reproduces the values obtained in the temperature range T = 230-1500 K at pressures between 30 mbar and 21 bar to better than within ±20%: k(OH+DME) = 8.45 × 10(-18) (T/K)(2.07) exp(262.2 K/T) cm(3) s(-1). For k(OH+DME-d6), to the best of our knowledge, this is the first experimental study. For the analysis of the reaction pathway and the kinetic isotope effect, potential energy diagrams were calculated by using three different quantum chemical methods: (I) CCSD(T)/cc-pV(T,Q)Z//MP2/6-311G(d,p), (II) CCSD(T)/cc-pV(T,Q)Z//CCSD/cc-pVDZ, and (III) CBS-QB3. In all three cases, the reaction is predicted to proceed via a prereaction OH-ether complex with subsequent intramolecular hydrogen abstraction and dissociation to give the methoxymethyl radical and water. Overall rate coefficients were calculated by assuming a thermal equilibrium between the reactants and the prereaction complex and by calculating the rate coefficients of the hydrogen abstraction step from canonical transition state theory. The results based on the molecular data from methods (I) and (II) showed a satisfactory agreement with the experimental values, which indicates that the pre-equilibrium assumption is reasonable under our conditions. In the case of method (III), the isotope effect was significantly underpredicted. The reason for this discrepancy was identified in a fundamentally differing reaction coordinate. Obviously, the B3LYP functional applied in method (III) for geometry and frequency calculations is inadequate to describe such systems, which is in line with earlier findings of other authors.

摘要

OH + CH3OCH3 (DME) 和 OH + CD3OCD3 (DME-d6) 反应的动力学同位素效应通过实验和理论进行了研究。实验在压力为 5 至 21 巴的慢流反应器中进行(氦气作为浴气),通过 HNO3 的激光闪光光解产生 OH,并通过激光诱导荧光实时检测 OH。得到的速率系数的温度依赖性可以用以下修正的 Arrhenius 表达式描述:k(OH+DME) = (4.5 ± 1.3) × 10(-16) (T/K)(1.48) exp(66.6 K/T) cm(3) s(-1) (T = 292-650 K, P = 5.9-20.9 bar) 和 k(OH+DME-d6) = (7.3 ± 2.2) × 10(-23) (T/K)(3.57) exp(759.8 K/T) cm(3) s(-1) (T = 387-554 K, P = 13.0-20.4 bar)。没有观察到速率系数的压力依赖性。我们对 k(OH+DME) 的实验结果与其他作者的值非常吻合,并且通过拟合所有可用的文献数据,我们得出了以下修正的 Arrhenius 表达式,该表达式在压力为 30 mbar 至 21 bar、温度范围为 T = 230-1500 K 的条件下,将得到的数值更好地复制到了 ±20%以内:k(OH+DME) = 8.45 × 10(-18) (T/K)(2.07) exp(262.2 K/T) cm(3) s(-1)。对于 k(OH+DME-d6),据我们所知,这是首次进行实验研究。为了分析反应途径和动力学同位素效应,使用三种不同的量子化学方法计算了势能图:(I) CCSD(T)/cc-pV(T,Q)Z//MP2/6-311G(d,p)、(II) CCSD(T)/cc-pV(T,Q)Z//CCSD/cc-pVDZ 和 (III) CBS-QB3。在所有三种情况下,反应均被预测通过 OH-醚配合物进行,随后进行分子内氢提取和解离,生成甲氧基甲基自由基和水。通过假设反应物和预反应配合物之间的热平衡,并通过从正则过渡态理论计算氢提取步骤的速率系数,计算了总速率系数。基于方法 (I) 和 (II) 中的分子数据得到的结果与实验值非常吻合,这表明在我们的条件下,预平衡假设是合理的。在方法 (III) 的情况下,同位素效应明显被低估了。这种差异的原因在于反应坐标的根本不同。显然,方法 (III) 中 B3LYP 函数用于几何和频率计算不足以描述此类系统,这与其他作者的早期发现一致。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验