Department of Psychology, City University, London, EC1V 0HB, London, UK.
Psychol Rev. 2013 Jul;120(3):679-96. doi: 10.1037/a0033142.
No other study has had as great an impact on the development of the similarity literature as that of Tversky (1977), which provided compelling demonstrations against all the fundamental assumptions of the popular, and extensively employed, geometric similarity models. Notably, similarity judgments were shown to violate symmetry and the triangle inequality and also be subject to context effects, so that the same pair of items would be rated differently, depending on the presence of other items. Quantum theory provides a generalized geometric approach to similarity and can address several of Tversky's main findings. Similarity is modeled as quantum probability, so that asymmetries emerge as order effects, and the triangle equality violations and the diagnosticity effect can be related to the context-dependent properties of quantum probability. We so demonstrate the promise of the quantum approach for similarity and discuss the implications for representation theory in general.
没有其他研究像特沃斯基(Tversky)的研究(1977)那样对相似性文献的发展产生了如此大的影响,该研究有力地证明了所有流行且广泛使用的几何相似性模型的基本假设都是错误的。值得注意的是,相似性判断被证明违反了对称和三角形不等式,并且还受到上下文效应的影响,因此相同的一对项目会根据其他项目的存在而被不同地评估。量子理论为相似性提供了一种广义的几何方法,并且可以解决特沃斯基的主要发现中的几个问题。相似性被建模为量子概率,因此不对称性表现为有序效应,三角形等式的违反和诊断效应可以与量子概率的上下文相关性质相关联。我们通过这种方式展示了量子方法在相似性方面的前景,并讨论了其对一般表示理论的影响。