Suppr超能文献

重印“使用双变量广义有序 Probit 方法对两车碰撞严重程度进行建模”。

Reprint of "Modeling two-vehicle crash severity by a bivariate generalized ordered probit approach".

机构信息

Institute of Traffic and Transportation, National Chiao Tung University, 4F, 118, Sec. 1, Chung-Hsiao W. Rd., Taipei 100, Taiwan.

出版信息

Accid Anal Prev. 2013 Dec;61:97-106. doi: 10.1016/j.aap.2013.07.005. Epub 2013 Jul 12.

Abstract

This study simultaneously models crash severity of both parties in two-vehicle accidents at signalized intersections in Taipei City, Taiwan, using a novel bivariate generalized ordered probit (BGOP) model. Estimation results show that the BGOP model performs better than the conventional bivariate ordered probit (BOP) model in terms of goodness-of-fit indices and prediction accuracy and provides a better approach to identify the factors contributing to different severity levels. According to estimated parameters in latent propensity functions and elasticity effects, several key risk factors are identified-driver type (age>65), vehicle type (motorcycle), violation type (alcohol use), intersection type (three-leg and multiple-leg), collision type (rear ended), and lighting conditions (night and night without illumination). Corresponding countermeasures for these risk factors are proposed.

摘要

本研究使用新颖的二元广义有序 Probit (BGOP) 模型,同时对台湾台北市信号交叉口两车事故中双方的碰撞严重程度进行建模。估计结果表明,BGOP 模型在拟合优度指标和预测准确性方面优于传统的二元有序 Probit (BOP) 模型,为确定导致不同严重程度的因素提供了更好的方法。根据潜在倾向函数和弹性效应中的估计参数,确定了几个关键的风险因素——驾驶员类型(年龄>65 岁)、车辆类型(摩托车)、违规类型(饮酒)、交叉口类型(三腿和多腿)、碰撞类型(追尾)和照明条件(夜间和无照明)。针对这些风险因素提出了相应的对策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验