Wake Forest Institute for Regenerative Medicine, Richard H. Dean Biomedical Research Building, 391 Technology Way, Winston-Salem, NC 27101, United States.
J Mech Behav Biomed Mater. 2013 Nov;27:115-27. doi: 10.1016/j.jmbbm.2013.07.008. Epub 2013 Jul 16.
Our objective was to characterize the elasticity of hydrogel formulations intended to mimic physical properties that cells and tissues experience in vivo. Using atomic force microscopy (AFM), we tested a variety of concentrations in a variety of biomaterials, including agarose, alginate, the collagens, fibrin, hyaluronic acid, kerateine, laminin, Matrigel, polyacrylamide, polyethylene glycol diacrylate (PEGDA) and silicone elastomer (polydimethylsiloxane). Manipulations of the concentration of biomaterials were detectable in AFM measurements of elasticity (Young's modulus, E), and E tended to increase with increased concentration. Depending on the biomaterials chosen, and their concentrations, generation of tunable biocompatible hydrogels in the physiologic range is possible.
我们的目标是描述水凝胶配方的弹性,以模拟细胞和组织在体内经历的物理特性。使用原子力显微镜(AFM),我们在各种生物材料中测试了多种浓度,包括琼脂糖、藻酸盐、胶原蛋白、纤维蛋白、透明质酸、角蛋白、层粘连蛋白、Matrigel、聚丙烯酰胺、聚乙二醇二丙烯酸酯(PEGDA)和硅酮弹性体(聚二甲基硅氧烷)。生物材料浓度的变化在弹性(杨氏模量,E)的 AFM 测量中是可检测的,并且 E 随着浓度的增加而增加。根据所选择的生物材料及其浓度,可以在生理范围内生成可调节的生物相容性水凝胶。