Suppr超能文献

过表达编码戊糖磷酸途径酶转酮醇酶和转醛醇酶的TKL1和TAL1基因的木糖代谢酿酒酵母菌株。

Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase.

作者信息

Walfridsson M, Hallborn J, Penttilä M, Keränen S, Hahn-Hägerdal B

机构信息

Department of Applied Microbiology, Lund University, Sweden.

出版信息

Appl Environ Microbiol. 1995 Dec;61(12):4184-90. doi: 10.1128/aem.61.12.4184-4190.1995.

Abstract

Saccharomyces cerevisiae was metabolically engineered for xylose utilization. The Pichia stipitis CBS 6054 genes XYL1 and XYL2 encoding xylose reductase and xylitol dehydrogenase were cloned into S. cerevisiae. The gene products catalyze the two initial steps in xylose utilization which S. cerevisiae lacks. In order to increase the flux through the pentose phosphate pathway, the S. cerevisiae TKL1 and TAL1 genes encoding transketolase and transaldolase were overexpressed. A XYL1- and XYL2-containing S. cerevisiae strain overexpressing TAL1 (S104-TAL) showed considerably enhanced growth on xylose compared with a strain containing only XYL1 and XYL2. Overexpression of only TKL1 did not influence growth. The results indicate that the transaldolase level in S. cerevisiae is insufficient for the efficient utilization of pentose phosphate pathway metabolites. Mixtures of xylose and glucose were simultaneously consumed with the recombinant strain S104-TAL. The rate of xylose consumption was higher in the presence of glucose. Xylose was used for growth and xylitol formation, but not for ethanol production. Decreased oxygenation resulted in impaired growth and increased xylitol formation. Fermentation with strain S103-TAL, having a xylose reductase/xylitol dehydrogenase ratio of 0.5:30 compared with 4.2:5.8 for S104-TAL, did not prevent xylitol formation.

摘要

酿酒酵母经过代谢工程改造以实现木糖利用。将树干毕赤酵母CBS 6054中编码木糖还原酶和木糖醇脱氢酶的XYL1和XYL2基因克隆到酿酒酵母中。这些基因产物催化酿酒酵母所缺乏的木糖利用的两个初始步骤。为了增加通过磷酸戊糖途径的通量,对酿酒酵母中编码转酮醇酶和转醛醇酶的TKL1和TAL1基因进行了过表达。与仅含有XYL1和XYL2基因的菌株相比,过表达TAL1基因的含有XYL1和XYL2基因的酿酒酵母菌株(S104-TAL)在木糖上的生长显著增强。仅过表达TKL1对生长没有影响。结果表明,酿酒酵母中转醛醇酶水平不足以有效利用磷酸戊糖途径代谢物。重组菌株S104-TAL能够同时消耗木糖和葡萄糖混合物。在有葡萄糖存在的情况下木糖消耗速率更高。木糖用于生长和木糖醇形成,但不用于乙醇生产。氧合作用降低导致生长受损和木糖醇形成增加。用S103-TAL菌株进行发酵,其木糖还原酶/木糖醇脱氢酶的比例为0.5:30,而S104-TAL的该比例为4.2:5.8,这并没有阻止木糖醇的形成。

相似文献

5
Shuffling of promoters for multiple genes to optimize xylose fermentation in an engineered Saccharomyces cerevisiae strain.
Appl Environ Microbiol. 2007 Oct;73(19):6072-7. doi: 10.1128/AEM.00955-07. Epub 2007 Aug 10.
9
A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation.
J Ind Microbiol Biotechnol. 2011 May;38(5):617-26. doi: 10.1007/s10295-010-0806-6. Epub 2010 Aug 17.

引用本文的文献

1
An atlas of rational genetic engineering strategies for improved xylose metabolism in .
PeerJ. 2023 Nov 28;11:e16340. doi: 10.7717/peerj.16340. eCollection 2023.
2
Prospecting and engineering yeasts for ethanol production under inhibitory conditions: an experimental design analysis.
Bioprocess Biosyst Eng. 2023 Aug;46(8):1133-1145. doi: 10.1007/s00449-022-02812-x. Epub 2022 Nov 24.
3
Harnessing the Endogenous 2μ Plasmid of for Pathway Construction.
Front Microbiol. 2021 Jun 18;12:679665. doi: 10.3389/fmicb.2021.679665. eCollection 2021.
4
Engineered for lignocellulosic valorization: a review and perspectives on bioethanol production.
Bioengineered. 2020 Dec;11(1):883-903. doi: 10.1080/21655979.2020.1801178.
5
Metabolic constraints drive self-organization of specialized cell groups.
Elife. 2019 Jun 26;8:e46735. doi: 10.7554/eLife.46735.
7
PKA and HOG signaling contribute separable roles to anaerobic xylose fermentation in yeast engineered for biofuel production.
PLoS One. 2019 May 21;14(5):e0212389. doi: 10.1371/journal.pone.0212389. eCollection 2019.
8
Enhanced protopanaxadiol production from xylose by engineered Yarrowia lipolytica.
Microb Cell Fact. 2019 May 18;18(1):83. doi: 10.1186/s12934-019-1136-7.
9
Enhancing the Co-utilization of Biomass-Derived Mixed Sugars by Yeasts.
Front Microbiol. 2019 Jan 22;9:3264. doi: 10.3389/fmicb.2018.03264. eCollection 2018.
10
Genomic and phenotypic characterization of a refactored xylose-utilizing strain for lignocellulosic biofuel production.
Biotechnol Biofuels. 2018 Sep 29;11:268. doi: 10.1186/s13068-018-1269-7. eCollection 2018.

本文引用的文献

1
Metabolic Engineering of a Pentose Metabolism Pathway in Ethanologenic Zymomonas mobilis.
Science. 1995 Jan 13;267(5195):240-3. doi: 10.1126/science.267.5195.240.
3
Chromosomal Integration and Expression of Two Bacterial alpha-Acetolactate Decarboxylase Genes in Brewer's Yeast.
Appl Environ Microbiol. 1991 Oct;57(10):2796-803. doi: 10.1128/aem.57.10.2796-2803.1991.
4
Effect of Oxygenation on Xylose Fermentation by Pichia stipitis.
Appl Environ Microbiol. 1990 Nov;56(11):3389-94. doi: 10.1128/aem.56.11.3389-3394.1990.
5
Intermediary Metabolite Concentrations in Xylulose- and Glucose-Fermenting Saccharomyces cerevisiae Cells.
Appl Environ Microbiol. 1990 Jan;56(1):120-6. doi: 10.1128/aem.56.1.120-126.1990.
6
d-Xylulose Fermentation to Ethanol by Saccharomyces cerevisiae.
Appl Environ Microbiol. 1981 Aug;42(2):284-9. doi: 10.1128/aem.42.2.284-289.1981.
8
Anaerobic nutrition of Saccharomyces cerevisiae. I. Ergosterol requirement for growth in a defined medium.
J Cell Comp Physiol. 1953 Feb;41(1):23-36. doi: 10.1002/jcp.1030410103.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验