Suppr超能文献

分类率比的错误解读和不恰当的暴露-反应模型拟合可能导致风险估计出现偏差:环氧乙烷案例研究。

Misinterpretation of categorical rate ratios and inappropriate exposure-response model fitting can lead to biased estimates of risk: ethylene oxide case study.

作者信息

Valdez-Flores Ciriaco, Sielken Robert L

机构信息

Sielken & Associates Consulting Inc., 3833 Texas Avenue, Suite 230, Bryan, TX 77802, USA.

出版信息

Regul Toxicol Pharmacol. 2013 Nov;67(2):206-14. doi: 10.1016/j.yrtph.2013.07.011. Epub 2013 Jul 31.

Abstract

There are pitfalls associated with exposure-response modeling of human epidemiological data based on rate ratios (RRs). Exposure-response modeling is best based on individual data, when available, rather than being based on summary results of that data such as categorical RRs. Because the data for the controls (or the lowest exposure interval if there are not enough controls) are random and not known with certainty a priori, any exposure-response model fit to RRs should estimate the intercept rather than fixing it equal to one. Evaluation of a model's goodness-of-fit to the individual data should not be based on the assumption that summary RRs describe the true underlying exposure-response relationship. These pitfalls are illustrated by Monte Carlo simulation examples with known underlying models. That these pitfalls are a practical concern is illustrated by the need for U.S. EPA to reconsider its most recent evaluation of ethylene oxide. If they had avoided these pitfalls, their exposure-response modeling would have been in better agreement with the log-linear model fit to the individual data.

摘要

基于率比(RRs)对人类流行病学数据进行暴露-反应建模存在一些陷阱。暴露-反应建模最好基于个体数据(如果可用),而不是基于该数据的汇总结果,如分类RRs。由于对照组的数据(或者如果没有足够的对照组,则为最低暴露区间的数据)是随机的,并且先验地不确定,因此任何适用于RRs的暴露-反应模型都应估计截距,而不是将其固定为等于1。对模型与个体数据拟合优度的评估不应基于汇总RRs描述真实潜在暴露-反应关系的假设。这些陷阱通过具有已知潜在模型的蒙特卡洛模拟示例进行了说明。美国环境保护局(U.S. EPA)需要重新考虑其对环氧乙烷的最新评估,这表明这些陷阱是一个实际问题。如果他们避免了这些陷阱,他们的暴露-反应建模将与拟合个体数据的对数线性模型更好地一致。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验