Department of Radiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21231, USA.
J Nucl Med. 2013 Sep;54(9):1535-42. doi: 10.2967/jnumed.112.117952. Epub 2013 Aug 5.
Combination treatment is a hallmark of cancer therapy. Although the rationale for combination radiopharmaceutical therapy was described in the mid-1990s, such treatment strategies have only been implemented clinically recently and without a rigorous methodology for treatment optimization. Radiobiologic and quantitative imaging-based dosimetry tools are now available that enable rational implementation of combined targeted radiopharmaceutical therapy. Optimal implementation should simultaneously account for radiobiologic normal-organ tolerance while optimizing the ratio of 2 different radiopharmaceuticals required to maximize tumor control. We have developed such a methodology and applied it to hypothetical myeloablative treatment of non-Hodgkin lymphoma (NHL) patients using (131)I-tositumomab and (90)Y-ibritumomab tiuxetan.
The range of potential administered activities (AAs) is limited by the normal-organ maximum-tolerated biologic effective doses (MTBEDs) arising from the combined radiopharmaceuticals. Dose-limiting normal organs are expected to be the lungs for (131)I-tositumomab and the liver for (90)Y-ibritumomab tiuxetan in myeloablative NHL treatment regimens. By plotting the limiting normal-organ constraints as a function of the AAs and calculating tumor biologic effective dose (BED) along the normal-organ MTBED limits, we obtained the optimal combination of activities. The model was tested using previously acquired patient normal-organ and tumor kinetic data and MTBED values taken from the literature.
The average AA value based solely on normal-organ constraints was 19.0 ± 8.2 GBq (range, 3.9-36.9 GBq) for (131)I-tositumomab and 2.77 ± 1.64 GBq (range, 0.42-7.54 GBq) for (90)Y-ibritumomab tiuxetan. Tumor BED optimization results were calculated and plotted as a function of AA for 5 different cases, established using patient normal-organ kinetics for the 2 radiopharmaceuticals. Results included AA ranges that would deliver 95% of the maximum tumor BED, allowing for informed inclusion of clinical considerations, such as a maximum-allowable (131)I administration.
A rational approach for combination radiopharmaceutical treatment has been developed within the framework of a proven 3-dimensional (3D) personalized dosimetry software, 3D-RD, and applied to the myeloablative treatment of NHL. We anticipate that combined radioisotope therapy will ultimately supplant single radioisotope therapy, much as combination chemotherapy has substantially replaced single-agent chemotherapy.
联合治疗是癌症治疗的标志。尽管联合放射药物治疗的原理在 20 世纪 90 年代中期就已经描述过,但这种治疗策略直到最近才在临床上实施,而且没有严格的治疗优化方法。现在有放射生物学和基于定量成像的剂量测定工具,可以合理地实施联合靶向放射药物治疗。最佳实施方式应同时考虑放射生物学的正常器官耐受度,同时优化两种不同放射性药物的比值,以最大限度地控制肿瘤。我们已经开发了这种方法,并将其应用于使用 (131)I-替妥莫单抗和 (90)Y-伊布替单抗替曲膦治疗非霍奇金淋巴瘤 (NHL) 患者的假设髓清除治疗中。
潜在的给予活性 (AA) 范围受来自联合放射性药物的正常器官最大耐受生物学有效剂量 (MTBED) 限制。在髓清除性 NHL 治疗方案中,预计放射性药物 (131)I-替妥莫单抗的限制正常器官为肺,放射性药物 (90)Y-伊布替单抗替曲膦为肝。通过将限制正常器官的约束作为 AA 的函数进行绘制,并沿着正常器官 MTBED 限制计算肿瘤生物学有效剂量 (BED),我们获得了最佳的活性组合。该模型使用以前获得的患者正常器官和肿瘤动力学数据以及从文献中获取的 MTBED 值进行了测试。
仅基于正常器官约束的平均 AA 值为放射性药物 (131)I-替妥莫单抗 19.0 ± 8.2GBq(范围 3.9-36.9GBq),放射性药物 (90)Y-伊布替单抗替曲膦 2.77 ± 1.64GBq(范围 0.42-7.54GBq)。使用两种放射性药物的患者正常器官动力学建立了 5 种不同情况的肿瘤 BED 优化结果,并作为 AA 的函数进行了计算和绘制。结果包括可以提供 95%最大肿瘤 BED 的 AA 范围,从而允许包括临床考虑因素,如最大允许 (131)I 剂量。
在经过验证的三维 (3D) 个性化剂量测定软件 3D-RD 的框架内,已经开发出了联合放射药物治疗的合理方法,并将其应用于 NHL 的髓清除治疗。我们预计,联合放射性同位素治疗最终将取代单一放射性同位素治疗,就像联合化疗已经大大取代了单一药物化疗一样。