Suppr超能文献

MIRD宣传册第31号:MIRDcell V4——用于制定优化放射性药物治疗鸡尾酒的人工智能工具。

MIRD Pamphlet No. 31: MIRDcell V4-Artificial Intelligence Tools to Formulate Optimized Radiopharmaceutical Cocktails for Therapy.

作者信息

Katugampola Sumudu, Wang Jianchao, Howell Roger W

机构信息

Division of Radiation Research, Department of Radiology, New Jersey Medical School, Rutgers University, Newark, New Jersey.

Division of Radiation Research, Department of Radiology, New Jersey Medical School, Rutgers University, Newark, New Jersey

出版信息

J Nucl Med. 2024 Dec 3;65(12):1965-1973. doi: 10.2967/jnumed.123.267238.

Abstract

Radiopharmaceutical cocktails have been developed over the years to treat cancer. Cocktails of agents are attractive because 1 radiopharmaceutical is unlikely to have the desired therapeutic effect because of nonuniform uptake by the targeted cells. Therefore, multiple radiopharmaceuticals targeting different receptors on a cell is warranted. However, past implementations in vivo have not met with convincing results because of the absence of optimization strategies. Here we present artificial intelligence (AI) tools housed in a new version of our software platform, MIRDcell V4, that optimize a cocktail of radiopharmaceuticals by minimizing the total disintegrations needed to achieve a given surviving fraction (SF) of tumor cells. AI tools are developed within MIRDcell V4 using an optimizer based on the sequential least-squares programming algorithm. The algorithm determines the molar activities for each drug in the cocktail that minimize the total disintegrations required to achieve a specified SF. Tools are provided for populations of cells that do not cross-irradiate (e.g., circulating or disseminated tumor cells) and for multicellular clusters (e.g., micrometastases). The tools were tested using model data, flow cytometry data for suspensions of single cells labeled with fluorochrome-labeled antibodies, and 3-dimensional spatiotemporal kinetics in spheroids for fluorochrome-loaded liposomes. Experimental binding distributions of 4 At-antibodies were considered for treating suspensions of MDA-MB-231 human breast cancer cells. A 2-drug combination reduced the number of At decays required by a factor of 1.6 relative to the best single antibody. In another study, 2 radiopharmaceuticals radiolabeled with Pt were each distributed lognormally in a hypothetical multicellular cluster. Here, the 2-drug combination required 1.7-fold fewer decays than did either drug alone. Finally, 2 Ac-labeled drugs that provide different radial distributions within a spheroid require about one half of the disintegrations required by the best single agent. The MIRDcell AI tools determine optimized drug combinations and corresponding molar activities needed to achieve a given SF. This approach could be used to analyze a sample of cells obtained from cell culture, animal, or patient to predict the best combination of drugs for maximum therapeutic effect with the least total disintegrations.

摘要

多年来,人们一直在研发用于治疗癌症的放射性药物鸡尾酒。药物鸡尾酒具有吸引力,因为单一放射性药物由于靶向细胞摄取不均匀,不太可能产生理想的治疗效果。因此,使用多种靶向细胞上不同受体的放射性药物是有必要的。然而,由于缺乏优化策略,过去在体内的应用并未取得令人信服的结果。在此,我们展示了我们软件平台新版本MIRDcell V4中包含的人工智能(AI)工具,这些工具通过最小化实现给定肿瘤细胞存活分数(SF)所需的总衰变次数来优化放射性药物鸡尾酒。MIRDcell V4中的AI工具是使用基于序列最小二乘法编程算法的优化器开发的。该算法确定鸡尾酒中每种药物的摩尔活度,以最小化实现指定SF所需的总衰变次数。还为不发生交叉照射的细胞群体(如循环或播散性肿瘤细胞)和多细胞簇(如微转移灶)提供了工具。这些工具使用模型数据、用荧光染料标记抗体标记的单细胞悬液的流式细胞术数据以及荧光染料负载脂质体在球体中的三维时空动力学进行了测试。考虑了4种抗At抗体的实验结合分布,用于治疗MDA - MB - 231人乳腺癌细胞悬液。与最佳单克隆抗体相比,两种药物组合将所需的At衰变次数减少了1.6倍。在另一项研究中,两种用Pt放射性标记的放射性药物在一个假设的多细胞簇中均呈对数正态分布。在此,两种药物组合所需的衰变次数比单独使用任何一种药物都少1.7倍。最后,两种在球体中提供不同径向分布的Ac标记药物所需的衰变次数约为最佳单一药物所需衰变次数的一半。MIRDcell AI工具确定实现给定SF所需的优化药物组合和相应的摩尔活度。这种方法可用于分析从细胞培养、动物或患者获得的细胞样本,以预测最佳药物组合,从而以最少的总衰变次数实现最大治疗效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6bea/11619582/085668667b47/jnumed.123.267238absf1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验