Suppr超能文献

曼塔匹配器:使用关键点特征对蝠鲼进行自动拍照识别。

Manta Matcher: automated photographic identification of manta rays using keypoint features.

机构信息

Computer Laboratory, University of Cambridge 15 JJ Thomson Avenue, Cambridge, CB3 0FD, UK.

出版信息

Ecol Evol. 2013 Jul;3(7):1902-14. doi: 10.1002/ece3.587. Epub 2013 May 22.

Abstract

For species which bear unique markings, such as natural spot patterning, field work has become increasingly more reliant on visual identification to recognize and catalog particular specimens or to monitor individuals within populations. While many species of interest exhibit characteristic markings that in principle allow individuals to be identified from photographs, scientists are often faced with the task of matching observations against databases of hundreds or thousands of images. We present a novel technique for automated identification of manta rays (Manta alfredi and Manta birostris) by means of a pattern-matching algorithm applied to images of their ventral surface area. Automated visual identification has recently been developed for several species. However, such methods are typically limited to animals that can be photographed above water, or whose markings exhibit high contrast and appear in regular constellations. While manta rays bear natural patterning across their ventral surface, these patterns vary greatly in their size, shape, contrast, and spatial distribution. Our method is the first to have proven successful at achieving high matching accuracies on a large corpus of manta ray images taken under challenging underwater conditions. Our method is based on automated extraction and matching of keypoint features using the Scale-Invariant Feature Transform (SIFT) algorithm. In order to cope with the considerable variation in quality of underwater photographs, we also incorporate preprocessing and image enhancement steps. Furthermore, we use a novel pattern-matching approach that results in better accuracy than the standard SIFT approach and other alternative methods. We present quantitative evaluation results on a data set of 720 images of manta rays taken under widely different conditions. We describe a novel automated pattern representation and matching method that can be used to identify individual manta rays from photographs. The method has been incorporated into a website (mantamatcher.org) which will serve as a global resource for ecological and conservation research. It will allow researchers to manage and track sightings data to establish important life-history parameters as well as determine other ecological data such as abundance, range, movement patterns, and structure of manta ray populations across the world.

摘要

对于具有独特标记的物种,例如自然斑点图案,野外工作越来越依赖于视觉识别来识别和分类特定标本或监测种群中的个体。虽然许多感兴趣的物种都具有特征性的标记,原则上可以通过照片来识别个体,但科学家们经常面临将观察结果与数百或数千张图像的数据库进行匹配的任务。我们提出了一种通过应用于腹面图像的模式匹配算法来自动识别蝠鲼(Manta alfredi 和 Manta birostris)的新方法。最近已经开发了几种用于自动视觉识别的方法。然而,这些方法通常仅限于可以在水面以上拍摄的动物,或者其标记具有高对比度并以规则的星座出现的动物。虽然蝠鲼的腹面具有天然图案,但这些图案在大小、形状、对比度和空间分布上差异很大。我们的方法是第一个在具有挑战性的水下条件下拍摄的大量蝠鲼图像上成功实现高精度匹配的方法。我们的方法基于使用 Scale-Invariant Feature Transform(SIFT)算法自动提取和匹配关键点特征。为了应对水下照片质量的巨大变化,我们还包含预处理和图像增强步骤。此外,我们使用了一种新颖的模式匹配方法,其准确性优于标准 SIFT 方法和其他替代方法。我们在一个由 720 张蝠鲼在广泛不同条件下拍摄的图像组成的数据集上进行了定量评估结果。我们描述了一种新颖的自动模式表示和匹配方法,可用于从照片中识别个体蝠鲼。该方法已被纳入一个网站(mantamatcher.org),该网站将成为生态和保护研究的全球资源。它将使研究人员能够管理和跟踪目击数据,以确定重要的生活史参数,并确定世界范围内蝠鲼种群的其他生态数据,例如丰度、范围、运动模式和结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f95/3728933/fdc0fa1720a1/ece30003-1902-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验