Suppr超能文献

照片 ID-鲸鱼:移动设备上的蓝鲸鱼背鳍分类。

PhotoId-Whale: Blue whale dorsal fin classification for mobile devices.

机构信息

SEPI-Culhuacan, Instituto Politécnico Nacional, Ciudad de México, México.

SEPI-ESCOM, Instituto Politécnico Nacional, Ciudad de México, México.

出版信息

PLoS One. 2020 Oct 12;15(10):e0237570. doi: 10.1371/journal.pone.0237570. eCollection 2020.

Abstract

Photo-identification (photo-id) is a method used in field studies by biologists to monitor animals according to their density, movement patterns and behavior, with the aim of predicting and preventing ecological risks. However, these methods can introduce subjectivity when manually classifying an individual animal, creating uncertainty or inaccuracy in the data as a result of the human criteria involved. One of the main objectives in photo-id is to implement an automated mechanism that is free of biases, portable, and easy to use. The main aim of this work is to develop an autonomous and portable photo-id system through the optimization of image classification algorithms that have high statistical dependence, with the goal of classifying dorsal fin images of the blue whale through offline information processing on a mobile platform. The new proposed methodology is based on the Scale Invariant Feature Transform (SIFT) that, in conjunction with statistical discriminators such as the variance and the standard deviation, fits the extracted data and selects the closest pixels that comprise the edges of the dorsal fin of the blue whale. In this way, we ensure the elimination of the most common external factors that could affect the quality of the image, thus avoiding the elimination of relevant sections of the dorsal fin. The photo-id method presented in this work has been developed using blue whale images collected off the coast of Baja California Sur. The results shown have qualitatively and quantitatively validated the method in terms of its sensitivity, specificity and accuracy on the Jetson Tegra TK1 mobile platform. The solution optimizes classic SIFT, balancing the results obtained with the computational cost, provides a more economical form of processing and obtains a portable system that could be beneficial for field studies through mobile platforms, making it available to scientists, government and the general public.

摘要

照片识别(photo-id)是生物学家在野外研究中用于监测动物密度、运动模式和行为的一种方法,目的是预测和预防生态风险。然而,这些方法在手动对个体动物进行分类时会引入主观性,由于涉及到人为标准,因此会导致数据的不确定性或不准确性。photo-id 的主要目标之一是开发一种无偏见、便携式且易于使用的自动化机制。这项工作的主要目的是通过优化具有高统计相关性的图像分类算法来开发一个自主和便携式的 photo-id 系统,旨在通过在移动平台上进行离线信息处理来对蓝鲸的背鳍图像进行分类。新提出的方法基于尺度不变特征变换(SIFT),与方差和标准差等统计判别器相结合,拟合提取的数据并选择包含蓝鲸背鳍边缘的最接近像素。通过这种方式,我们确保消除了可能影响图像质量的最常见外部因素,从而避免了背鳍相关部分的消除。本文提出的 photo-id 方法是使用在加利福尼亚湾海岸收集的蓝鲸图像开发的。所展示的结果在 Jetson Tegra TK1 移动平台上从敏感性、特异性和准确性方面对该方法进行了定性和定量验证。该解决方案优化了经典的 SIFT,平衡了计算成本所获得的结果,提供了更经济的处理方式,并获得了一种便携式系统,可通过移动平台用于野外研究,使科学家、政府和公众都能受益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb3c/7549799/9009b3506cba/pone.0237570.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验