Suppr超能文献

通过结合基于案例的分类器进行无监督医学图像分类。

Unsupervised medical image classification by combining case-based classifiers.

作者信息

Dinh Thien Anh, Silander Tomi, Su Bolan, Gong Tianxia, Pang Boon Chuan, Lim C C Tchoyoson, Lee Cheng Kiang, Tan Chew Lim, Leong Tze-Yun

机构信息

School of Computing, National University of Singapore, Singapore.

出版信息

Stud Health Technol Inform. 2013;192:739-43.

Abstract

We introduce an automated pathology classification system for medical volumetric brain image slices. Existing work often relies on handcrafted features extracted from automatic image segmentation. This is not only a challenging and time-consuming process, but it may also limit the adaptability and robustness of the system. We propose a novel approach to combine sparse Gabor-feature based classifiers in an ensemble classification framework. The unsupervised nature of this non-parametric technique can significantly reduce the time and effort for system calibration. In particular, classification of medical images in this framework does not rely on segmentation, nor semantic-based or annotation-based feature selection. Our experiments show very promising results in classifying computer tomography image slices into pathological classes for traumatic brain injury patients.

摘要

我们介绍了一种用于医学脑部容积图像切片的自动病理分类系统。现有工作通常依赖于从自动图像分割中提取的手工特征。这不仅是一个具有挑战性且耗时的过程,还可能限制系统的适应性和鲁棒性。我们提出了一种新颖的方法,即在集成分类框架中组合基于稀疏伽柏特征的分类器。这种非参数技术的无监督性质可以显著减少系统校准的时间和工作量。特别是,在此框架中对医学图像的分类不依赖于分割,也不依赖于基于语义或基于注释的特征选择。我们的实验表明,在将计算机断层扫描图像切片分类为创伤性脑损伤患者的病理类别方面取得了非常有前景的结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验