Suppr超能文献

针对EHR4CR协议可行性场景的查询引擎优化。

Query engine optimization for the EHR4CR protocol feasibility scenario.

作者信息

Soto-Rey Iñaki, Bache Richard, Dugas Martin, Fritz Fleur

机构信息

Institute of Medical Informatics, University of Münster, Münster, Germany.

出版信息

Stud Health Technol Inform. 2013;192:1080.

Abstract

An essential step when recruiting patients for a Clinical Trial (CT) is to determine the number of patients that satisfy the Eligibility Criteria (ECs) for that trial. An innovative feature of the Electronic Health Records for Clinical Research (EHR4CR) platform is that when automatically determining patient counts, it also allows the user to view counts for subsets of the ECs. This is helpful because some combinations of ECs may be so restrictive that they yield very few or zero patients. If we wanted to show all possible combinations of ECs, the number of queries we would have to execute would be of 2, where n is the total number of ECs. Assuming that an average study has between 20 and 30 ECs, the program would have to execute between 2 (1,048,576) and 2 (1,073,741,824) queries. This is not only computationally expensive but also impractical to visualise. The purpose of our research is to reduce possible combinationsto a manageable number.

摘要

为临床试验(CT)招募患者时的一个关键步骤是确定符合该试验纳入标准(ECs)的患者数量。临床研究电子健康记录(EHR4CR)平台的一个创新功能是,在自动确定患者数量时,它还允许用户查看纳入标准子集的数量。这很有帮助,因为某些纳入标准的组合可能非常严格,以至于符合条件的患者很少或为零。如果我们想展示纳入标准的所有可能组合,我们必须执行的查询数量将为2的n次方,其中n是纳入标准的总数。假设一项平均研究有20到30个纳入标准,程序将不得不执行2的20次方(1,048,576)到2的30次方(1,073,741,824)个查询。这不仅计算成本高昂,而且可视化也不切实际。我们研究的目的是将可能的组合减少到可管理的数量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验