Patterson Olga V, Ginter Thomas, DuVall Scott L
VA Salt Lake City Health Care System, Salt Lake City, UT, USA.
Stud Health Technol Inform. 2013;192:1211.
Instance-based classification of clinical text is a widely used natural language processing task employed as a step for patient classification, document retrieval, or information extraction. Rule-based approaches rely on concept identification and context analysis in order to determine the appropriate class. We propose a five-step process that enables even small research teams to develop simple but powerful rule-based NLP systems by taking advantage of a common UIMA AS based pipeline for classification. Our proposed methodology coupled with the general-purpose solution provides researchers with access to the data locked in clinical text in cases of limited human resources and compact timelines.
基于实例的临床文本分类是一种广泛使用的自然语言处理任务,用作患者分类、文档检索或信息提取的一个步骤。基于规则的方法依靠概念识别和上下文分析来确定合适的类别。我们提出了一个五步流程,通过利用基于通用UIMA AS的分类管道,即使是小型研究团队也能够开发简单但强大的基于规则的自然语言处理系统。我们提出的方法与通用解决方案相结合,在人力资源有限和时间紧迫的情况下,为研究人员提供了访问锁定在临床文本中的数据的途径。