Taira Ricky K, Arnold Corey W
Department of Radiological Sciences, University of California, Los Angeles, USA.
Stud Health Technol Inform. 2013;192:1194.
We present a framework for building a medical natural language processing (NLP) system capable of deep understanding of clinical text reports. The framework helps developers understand how various NLP-related efforts and knowledge sources can be integrated. The aspects considered include: 1) computational issues dealing with defining layers of intermediate semantic structures to reduce the dimensionality of the NLP problem; 2) algorithmic issues in which we survey the NLP literature and discuss state-of-the-art procedures used to map between various levels of the hierarchy; and 3) implementation issues to software developers with available resources. The objective of this poster is to educate readers to the various levels of semantic representation (e.g., word level concepts, ontological concepts, logical relations, logical frames, discourse structures, etc.). The poster presents an architecture for which diverse efforts and resources in medical NLP can be integrated in a principled way.
我们提出了一个用于构建能够深度理解临床文本报告的医学自然语言处理(NLP)系统的框架。该框架有助于开发者理解如何整合各种与NLP相关的工作和知识来源。所考虑的方面包括:1)处理定义中间语义结构层以降低NLP问题维度的计算问题;2)算法问题,我们在其中调研NLP文献并讨论用于在层次结构的不同级别之间映射的最新程序;以及3)针对拥有可用资源的软件开发人员的实现问题。本海报的目的是让读者了解语义表示的各个级别(例如,单词级概念、本体概念、逻辑关系、逻辑框架、话语结构等)。该海报展示了一种架构,通过它可以以有原则的方式整合医学NLP中的各种工作和资源。