Wurbs Jeremy, Mingolla Ennio, Yazdanbakhsh Arash
Center for Computational Neuroscience and Neural Technology, Program of Cognitive and Neural Systems, Boston University, Boston, MA, USA.
J Vis. 2013 Aug 6;13(10):2. doi: 10.1167/13.10.2.
Receptive field sizes of neurons in early primate visual areas increase with eccentricity, as does temporal processing speed. The fovea is evidently specialized for slow, fine movements while the periphery is suited for fast, coarse movements. In either the fovea or periphery discrete flashes can produce motion percepts. Grossberg and Rudd (1989) used traveling Gaussian activity profiles to model long-range apparent motion percepts. We propose a neural model constrained by physiological data to explain how signals from retinal ganglion cells to V1 affect the perception of motion as a function of eccentricity. Our model incorporates cortical magnification, receptive field overlap and scatter, and spatial and temporal response characteristics of retinal ganglion cells for cortical processing of motion. Consistent with the finding of Baker and Braddick (1985), in our model the maximum flash distance that is perceived as an apparent motion (Dmax) increases linearly as a function of eccentricity. Baker and Braddick (1985) made qualitative predictions about the functional significance of both stimulus and visual system parameters that constrain motion perception, such as an increase in the range of detectable motions as a function of eccentricity and the likely role of higher visual processes in determining Dmax. We generate corresponding quantitative predictions for those functional dependencies for individual aspects of motion processing. Simulation results indicate that the early visual pathway can explain the qualitative linear increase of Dmax data without reliance on extrastriate areas, but that those higher visual areas may serve as a modulatory influence on the exact Dmax increase.
早期灵长类动物视觉区域中神经元的感受野大小会随着离心率的增加而增大,时间处理速度也是如此。中央凹显然专门用于缓慢、精细的运动,而外周则适合快速、粗略的运动。在中央凹或外周,离散的闪光都能产生运动感知。格罗斯伯格和拉德(1989年)使用移动的高斯活动轮廓来模拟远距离的表观运动感知。我们提出一个受生理数据约束的神经模型,以解释从视网膜神经节细胞到V1的信号如何根据离心率影响运动感知。我们的模型纳入了皮质放大率、感受野重叠和散射,以及视网膜神经节细胞的空间和时间响应特性,用于运动的皮质处理。与贝克和布拉迪克(1985年)的发现一致,在我们的模型中,被感知为表观运动的最大闪光距离(Dmax)作为离心率的函数呈线性增加。贝克和布拉迪克(1985年)对约束运动感知的刺激和视觉系统参数的功能意义做出了定性预测,比如可检测运动范围随离心率增加,以及高级视觉过程在确定Dmax中可能发挥的作用。我们针对运动处理各个方面的那些功能依赖性生成了相应的定量预测。模拟结果表明,早期视觉通路可以解释Dmax数据的定性线性增加,而无需依赖纹外区域,但那些高级视觉区域可能对Dmax的确切增加起到调节作用。