Suppr超能文献

一种用于跨视野运动解释的空间可变模型。

A space-variant model for motion interpretation across the visual field.

作者信息

Chessa Manuela, Maiello Guido, Bex Peter J, Solari Fabio

出版信息

J Vis. 2016 Jan 1;16(2):12. doi: 10.1167/16.2.12.

Abstract

We implement a neural model for the estimation of the focus of radial motion (FRM) at different retinal locations and assess the model by comparing its results with respect to the precision with which human observers can estimate the FRM in naturalistic motion stimuli. The model describes the deep hierarchy of the first stages of the dorsal visual pathway and is space variant, since it takes into account the retino-cortical transformation of the primate visual system through log-polar mapping. The log-polar transform of the retinal image is the input to the cortical motion-estimation stage, where optic flow is computed by a three-layer neural population. The sensitivity to complex motion patterns that has been found in area MST is modeled through a population of adaptive templates. The first-order description of cortical optic flow is derived from the responses of the adaptive templates. Information about self-motion (e.g., direction of heading) is estimated by combining the first-order descriptors computed in the cortical domain. The model's performance at FRM estimation as a function of retinal eccentricity neatly maps onto data from human observers. By employing equivalent-noise analysis we observe that loss in FRM accuracy for both model and human observers is attributable to a decrease in the efficiency with which motion information is pooled with increasing retinal eccentricity in the visual field. The decrease in sampling efficiency is thus attributable to receptive-field size increases with increasing retinal eccentricity, which are in turn driven by the lossy log-polar mapping that projects the retinal image onto primary visual areas. We further show that the model is able to estimate direction of heading in real-world scenes, thus validating the model's potential application to neuromimetic robotic architectures. More broadly, we provide a framework in which to model complex motion integration across the visual field in real-world scenes.

摘要

我们实现了一个神经模型,用于估计不同视网膜位置的径向运动焦点(FRM),并通过将其结果与人类观察者在自然运动刺激中估计FRM的精度进行比较来评估该模型。该模型描述了背侧视觉通路第一阶段的深度层次结构,并且是空间变体,因为它通过对数极坐标映射考虑了灵长类视觉系统的视网膜 - 皮质转换。视网膜图像的对数极坐标变换是皮质运动估计阶段的输入,在该阶段,通过三层神经群体计算光流。通过一组自适应模板对在MST区域中发现的对复杂运动模式的敏感性进行建模。皮质光流的一阶描述来自自适应模板的响应。通过组合在皮质域中计算的一阶描述符来估计关于自我运动的信息(例如,航向方向)。该模型在FRM估计方面作为视网膜离心率函数的性能与人类观察者的数据精确匹配。通过采用等效噪声分析,我们观察到模型和人类观察者在FRM准确性方面的损失归因于随着视野中视网膜离心率增加,运动信息合并效率的降低。采样效率的降低因此归因于感受野大小随着视网膜离心率增加而增加,这反过来又由将视网膜图像投影到初级视觉区域的有损对数极坐标映射驱动。我们进一步表明,该模型能够估计现实世界场景中的航向方向,从而验证了该模型在神经仿生机器人架构中的潜在应用。更广泛地说,我们提供了一个框架,用于对现实世界场景中跨视野的复杂运动整合进行建模。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验