Espejo-Porras Francisco, Fernández-Ruiz Javier, Pertwee Roger G, Mechoulam Raphael, García Concepción
Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Spain.
Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Spain.
Neuropharmacology. 2013 Dec;75:155-63. doi: 10.1016/j.neuropharm.2013.07.024. Epub 2013 Aug 4.
The broad presence of CB1 receptors in the basal ganglia, mainly in GABA- or glutamate-containing neurons, as well as the presence of TRPV1 receptors in dopaminergic neurons and the identification of CB2 receptors in some neuronal subpopulations within the basal ganglia, explain the powerful motor effects exerted by those cannabinoids that can activate/block these receptors. By contrast, cannabidiol (CBD), a phytocannabinoid with a broad therapeutic profile, is generally presented as an example of a cannabinoid compound with no motor effects due to its poor affinity for the CB1 and the CB2 receptor, despite its activity at the TRPV1 receptor. However, recent evidence suggests that CBD may interact with the serotonin 5-HT1A receptor to produce some of its beneficial effects. This may enable CBD to directly influence motor activity through the well-demonstrated role of serotonergic transmission in the basal ganglia. We have investigated this issue in rats using three different pharmacological and neurochemical approaches. First, we compared the motor effects of various i.p. doses of CBD with the selective 5-HT1A receptor agonist, 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT; i.p.). Second, we investigated whether the motor effects of CBD are sensitive to 5-HT1A receptor blockade in comparison with CB1 receptor antagonism. Finally, we investigated whether CBD was able to potentiate the effect of a sub-effective dose of 8-OH-DPAT. Our results demonstrated that: (i) only high doses of CBD (>10 mg/kg) altered motor behavior measured in a computer-aided actimeter; (ii) these alterations were restricted to vertical activity (rearing) with only modest changes in other parameters; (iii) similar effects were produced by 8-OH-DPAT (1 mg/kg), although this agonist affected exclusively vertical activity, with no effects on other motor parameters, and it showed always more potency than CBD; (iv) the effects of 8-OH-DPAT (1 mg/kg) and CBD (20 mg/kg) on vertical activity were reversed by the 5-HT1A receptor antagonist WAY-100,635 (0.5 mg/kg; i.p.); (v) the effects of CBD (20 mg/kg) on vertical activity were not reversed by the CB1 receptor antagonist rimonabant (0.1 mg/kg; i.p.); (vi) the effect of 8-OH-DPAT on vertical activity was associated with an increase in serotonin content in the basal ganglia, a neurochemical change not produced by CBD (20 mg/kg); and (vii) CBD at a dose of 20 mg/kg was able to enhance motor effects of a sub-effective dose of 8-OH-DPAT (0.1 mg/kg), producing the expected changes in serotonergic transmission in the basal ganglia. Collectively, these results suggest that CBD may influence motor activity, in particular vertical activity, and that this effect seems to be dependent on its ability to target the 5-HT1A receptor, a mechanism of action that has been proposed to account for its anti-emetic, anxiolytic and antidepressant effects.
CB1受体广泛存在于基底神经节中,主要存在于含γ-氨基丁酸(GABA)或谷氨酸的神经元中,多巴胺能神经元中存在瞬时受体电位香草酸亚型1(TRPV1)受体,并且在基底神经节内的一些神经元亚群中鉴定出了CB2受体,这些解释了那些能够激活/阻断这些受体的大麻素所产生的强大运动效应。相比之下,大麻二酚(CBD)是一种具有广泛治疗作用的植物大麻素,由于其对CB1和CB2受体的亲和力较差,尽管它对TRPV1受体有活性,但通常被视为一种没有运动效应的大麻素化合物的例子。然而,最近的证据表明,CBD可能与5-羟色胺5-HT1A受体相互作用以产生其一些有益作用。这可能使CBD能够通过5-羟色胺能传递在基底神经节中已得到充分证实的作用来直接影响运动活动。我们使用三种不同的药理学和神经化学方法在大鼠中研究了这个问题。首先,我们比较了腹腔注射不同剂量CBD与选择性5-HT1A受体激动剂8-羟基-2-(二正丙基氨基)四氢萘(8-OH-DPAT;腹腔注射)的运动效应。其次,与CB1受体拮抗作用相比,我们研究了CBD的运动效应是否对5-HT1A受体阻断敏感。最后,我们研究了CBD是否能够增强亚有效剂量的8-OH-DPAT的作用。我们的结果表明:(i)只有高剂量的CBD(>10mg/kg)改变了在计算机辅助活动计中测量的运动行为;(ii)这些改变仅限于垂直活动(竖毛),其他参数只有适度变化;(iii)8-OH-DPAT(1mg/kg)产生了类似的效应,尽管这种激动剂仅影响垂直活动,对其他运动参数没有影响,并且它始终比CBD更有效;(iv)5-HT1A受体拮抗剂WAY-100,635(0.5mg/kg;腹腔注射)逆转了8-OH-DPAT(1mg/kg)和CBD(20mg/kg)对垂直活动的效应;(v)CB1受体拮抗剂利莫那班(0.1mg/kg;腹腔注射)没有逆转CBD(20mg/kg)对垂直活动的效应;(vi)8-OH-DPAT对垂直活动的效应与基底神经节中5-羟色胺含量的增加有关,这是CBD(20mg/kg)未产生的神经化学变化;并且(vii)20mg/kg剂量的CBD能够增强亚有效剂量的8-OH-DPAT(0.1mg/kg)的运动效应,在基底神经节中产生5-羟色胺能传递的预期变化。总体而言,这些结果表明CBD可能影响运动活动,特别是垂直活动,并且这种效应似乎取决于其靶向5-HT1A受体 的能力,这是一种已被提出用于解释其止吐、抗焦虑和抗抑郁作用的作用机制。