Suppr超能文献

高效探索协调基因树空间。

Efficient exploration of the space of reconciled gene trees.

机构信息

Laboratoire de Biométrie et Biologie Evolutive, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5558, Université Lyon 1, F-69622 Villeurbanne;

出版信息

Syst Biol. 2013 Nov;62(6):901-12. doi: 10.1093/sysbio/syt054. Epub 2013 Aug 6.

Abstract

Gene trees record the combination of gene-level events, such as duplication, transfer and loss (DTL), and species-level events, such as speciation and extinction. Gene tree-species tree reconciliation methods model these processes by drawing gene trees into the species tree using a series of gene and species-level events. The reconstruction of gene trees based on sequence alone almost always involves choosing between statistically equivalent or weakly distinguishable relationships that could be much better resolved based on a putative species tree. To exploit this potential for accurate reconstruction of gene trees, the space of reconciled gene trees must be explored according to a joint model of sequence evolution and gene tree-species tree reconciliation. Here we present amalgamated likelihood estimation (ALE), a probabilistic approach to exhaustively explore all reconciled gene trees that can be amalgamated as a combination of clades observed in a sample of gene trees. We implement the ALE approach in the context of a reconciliation model (Szöllősi et al. 2013), which allows for the DTL of genes. We use ALE to efficiently approximate the sum of the joint likelihood over amalgamations and to find the reconciled gene tree that maximizes the joint likelihood among all such trees. We demonstrate using simulations that gene trees reconstructed using the joint likelihood are substantially more accurate than those reconstructed using sequence alone. Using realistic gene tree topologies, branch lengths, and alignment sizes, we demonstrate that ALE produces more accurate gene trees even if the model of sequence evolution is greatly simplified. Finally, examining 1099 gene families from 36 cyanobacterial genomes we find that joint likelihood-based inference results in a striking reduction in apparent phylogenetic discord, with respectively. 24%, 59%, and 46% reductions in the mean numbers of duplications, transfers, and losses per gene family. The open source implementation of ALE is available from https://github.com/ssolo/ALE.git.

摘要

基因树记录了基因水平事件的组合,如复制、转移和丢失(DTL),以及物种水平事件,如物种形成和灭绝。基因树-物种树协调方法通过使用一系列基因和物种水平事件将基因树绘制到物种树上来模拟这些过程。仅基于序列重建基因树几乎总是涉及在统计学上等效或难以区分的关系之间进行选择,而基于假定的物种树可以更好地解决这些关系。为了利用准确重建基因树的这一潜力,必须根据序列进化和基因树-物种树协调的联合模型探索协调基因树的空间。在这里,我们提出了合并似然估计(ALE),这是一种概率方法,可以彻底探索可以作为样本基因树中观察到的聚类组合的所有协调基因树。我们在协调模型(Szöllősi 等人,2013 年)的背景下实现了 ALE 方法,该模型允许基因的 DTL。我们使用 ALE 有效地近似合并的联合似然的和,并找到最大化所有此类树的联合似然的协调基因树。我们使用模拟证明,使用联合似然重建的基因树比仅使用序列重建的基因树准确得多。使用现实的基因树拓扑结构、分支长度和对齐大小,我们证明即使简化了序列进化模型,ALE 也能产生更准确的基因树。最后,检查 36 个蓝藻基因组中的 1099 个基因家族,我们发现基于联合似然的推断导致明显减少了明显的系统发育不和谐,分别减少了每个基因家族的复制、转移和丢失的平均数量的 24%、59%和 46%。ALE 的开源实现可从 https://github.com/ssolo/ALE.git 获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验