Department of Biomedical and Pharmaceutical Sciences.
Glycobiology. 2013 Nov;23(11):1250-9. doi: 10.1093/glycob/cwt061. Epub 2013 Aug 6.
Mechanisms for nonenzymatic protein glycation have been extensively studied albeit with an emphasis at the later stages that gives rise to advanced glycation end products. No detailed investigation of the initial, noncovalent binding of d-glucose to human hemoglobin A (HbA) exists in the literature. Although anionic molecules 2,3-bisphosphoglycerate (BPG), inorganic phosphate (Pi) and HCO3(-) have been implicated in the latter stages of glycation, their involvement at the initial binding of glucose to HbA has not yet been assessed. Results from this computational study involving crystal structures of HbA predict that the transient, ring-opened glucose isomer, assumed to be critical in the later stages of glycation, is not directly involved in initial binding to the β-chain of HbA. All the five structures of glucose generated upon mutorotation will undergo reversible, competitive and slow binding at multiple amino acid residues. The ring-opened structure is most likely generated from previously bound pyranoses that undergo mutarotation while bound. BPG, Pi and HCO3(-) also reversibly bind to HbA with similar energies as glucose isomers (~3-5 kcal/mol) and share common binding sites with glucose isomers. However, there was modest amino acid residue selectivity for binding of certain anionic molecules (1-3 regions) but limited selectivity for glucose structures (≥ 7 regions). The clinical difference between average blood glucose and predicted HbA1c, and the presence of unstable HbA-glucose complexes may be more fully explained by initial noncovalent binding interactions and different concentrations of BPG, Pi and HCO3(-) in serum vs. erythrocytes.
非酶蛋白糖基化的机制已经得到了广泛的研究,尽管重点是在导致晚期糖基化终产物的后期阶段。文献中没有对 d-葡萄糖与人血红蛋白 A(HbA)最初的非共价结合进行详细的研究。虽然阴离子分子 2,3-二磷酸甘油酸(BPG)、无机磷(Pi)和 HCO3(-) 已经被牵连到糖基化的后期阶段,但它们在葡萄糖与 HbA 的初始结合中的参与尚未得到评估。这项涉及 HbA 晶体结构的计算研究结果表明,在糖基化后期阶段被认为至关重要的瞬态、开环葡萄糖异构体,并不直接参与与 HbA 的β链的初始结合。在旋转变构作用下生成的所有 5 种葡萄糖结构都将在多个氨基酸残基上进行可逆、竞争和缓慢的结合。开环结构最有可能是由先前结合的吡喃糖生成的,而吡喃糖在结合时会发生变旋。BPG、Pi 和 HCO3(-) 也以与葡萄糖异构体相似的能量(~3-5 kcal/mol)可逆地与 HbA 结合,并与葡萄糖异构体共享共同的结合位点。然而,对于某些阴离子分子(1-3 区域)的结合,存在适度的氨基酸残基选择性,但对于葡萄糖结构(≥7 区域)的选择性有限。平均血糖与预测的 HbA1c 之间的临床差异,以及不稳定的 HbA-葡萄糖复合物的存在,可能通过初始非共价结合相互作用以及血清与红细胞中 BPG、Pi 和 HCO3(-) 的不同浓度得到更充分的解释。