University of Bordeaux, Interdisciplinary Institute for Neuroscience, and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5297, F-33000 Bordeaux, France.
J Neurosci. 2013 Aug 7;33(32):13204-24. doi: 10.1523/JNEUROSCI.2381-12.2013.
The spatiotemporal organization of neurotransmitter receptors in postsynaptic membranes is a fundamental determinant of synaptic transmission and information processing by the brain. Using four independent super-resolution light imaging methods and EM of genetically tagged and endogenous receptors, we show that, in rat hippocampal neurons, AMPARs are often highly concentrated inside synapses into a few clusters of ∼70 nm that contain ∼20 receptors. AMPARs are stabilized reversibly in these nanodomains and diffuse freely outside them. Nanodomains are dynamic in their shape and position within synapses and can form or disappear within minutes, although they are mostly stable for up to 1 h. AMPAR nanodomains are often, but not systematically, colocalized with clusters of the scaffold protein PSD95, which are generally of larger size than AMPAR nanoclusters. PSD95 expression level regulates AMPAR nanodomain size and compactness in parallel to miniature EPSC amplitude. Monte Carlo simulations further indicate the impact of AMPAR concentration in clusters on the efficacy of synaptic transmission. The observation that AMPARs are highly concentrated in nanodomains, instead of diffusively distributed in the PSD as generally thought, has important consequences on our understanding of excitatory neurotransmission. Furthermore, our results indicate that glutamatergic synaptic transmission is controlled by the nanometer-scale regulation of the size of these highly concentrated nanodomains.
神经递质受体在突触后膜中的时空组织是决定大脑中突触传递和信息处理的基本因素。我们使用四种独立的超分辨率光成像方法和 EM 对基因标记和内源性受体进行研究,结果表明,在大鼠海马神经元中,AMPA 受体通常高度集中在突触内的几个簇中,每个簇的大小约为 70nm,包含约 20 个受体。这些纳米区中的 AMPAR 受体是可逆稳定的,并且在它们之外自由扩散。纳米区在突触内的形状和位置是动态的,可以在几分钟内形成或消失,尽管它们在长达 1 小时内大多是稳定的。AMPA 受体纳米区经常但不是系统地与支架蛋白 PSD95 的簇共定位,PSD95 簇通常比 AMPA 纳米簇大。PSD95 的表达水平与小的 EPSC 幅度平行调节 AMPAR 纳米区的大小和紧凑度。蒙特卡罗模拟进一步表明了 AMPAR 在簇中的浓度对突触传递效率的影响。与普遍认为的 AMPAR 弥散分布在 PSD 中的观点相反,AMPA 受体高度集中在纳米区的观察结果对我们理解兴奋性神经传递具有重要意义。此外,我们的结果表明,谷氨酸能突触传递受到这些高度集中的纳米区大小的纳米级调控的控制。