Applied Research Laboratories, The University of Texas at Austin, Austin, Texas 78713-8029, USA.
J Acoust Soc Am. 2013 Aug;134(2):1454-62. doi: 10.1121/1.4812864.
A model is developed for a pulsating and translating gas bubble immersed in liquid in a channel formed by two soft, thin elastic parallel layers having densities equal to that of the surrounding liquid and small, but finite, shear moduli. The bubble is nominally spherical but free to undergo small shape deformations. Shear strain in the elastic layers is estimated in a way which is valid for short, transient excitations of the system. Coupled nonlinear second-order differential equations are obtained for the shape and position of the bubble, and numerical integration of an expression for the liquid velocity at the layer interfaces yields an estimate of the elastic layer displacement. Numerical integration of the dynamical equations reveals behavior consistent with laboratory observations of acoustically excited bubbles in ex vivo vessels reported by Chen et al. [Phys. Rev. Lett. 106, 034301 (2011) and Ultrasound Med. Biol. 37, 2139-2148 (2011)].
建立了一个模型,用于研究在由两个柔软、薄的弹性平行层形成的通道中浸入液体的脉动和移动的气泡,这些弹性层的密度与周围液体相等,且具有较小但有限的剪切模量。气泡在名义上是球形的,但可以自由进行小的形状变形。弹性层中的剪切应变是通过一种对于系统的短暂瞬态激励有效的方法来估计的。对于气泡的形状和位置,得到了耦合的非线性二阶微分方程,并且通过对层界面处液体速度的表达式进行数值积分,得到了弹性层位移的估计。动力方程的数值积分揭示了与 Chen 等人在离体血管中声激发气泡的实验室观察结果一致的行为[Phys. Rev. Lett. 106, 034301 (2011) 和 Ultrasound Med. Biol. 37, 2139-2148 (2011)]。