Suppr超能文献

飞行时间相机的校准,以实现精确的术中表面重建。

Calibration of time-of-flight cameras for accurate intraoperative surface reconstruction.

机构信息

Division of Medical and Biological Informatics, Junior Group Computer-assisted Interventions, German Cancer Research Center (DKFZ), Heidelberg, Baden-Wurttemberg 69120, Germany.

出版信息

Med Phys. 2013 Aug;40(8):082701. doi: 10.1118/1.4812889.

Abstract

PURPOSE

In image-guided surgery (IGS) intraoperative image acquisition of tissue shape, motion, and morphology is one of the main challenges. Recently, time-of-flight (ToF) cameras have emerged as a new means for fast range image acquisition that can be used for multimodal registration of the patient anatomy during surgery. The major drawbacks of ToF cameras are systematic errors in the image acquisition technique that compromise the quality of the measured range images. In this paper, we propose a calibration concept that, for the first time, accounts for all known systematic errors affecting the quality of ToF range images. Laboratory and in vitro experiments assess its performance in the context of IGS.

METHODS

For calibration the camera-related error sources depending on the sensor, the sensor temperature and the set integration time are corrected first, followed by the scene-specific errors, which are modeled as function of the measured distance, the amplitude and the radial distance to the principal point of the camera. Accounting for the high accuracy demands in IGS, we use a custom-made calibration device to provide reference distance data, the cameras are calibrated too. To evaluate the mitigation of the error, the remaining residual error after ToF depth calibration was compared with that arising from using the manufacturer routines for several state-of-the-art ToF cameras. The accuracy of reconstructed ToF surfaces was investigated after multimodal registration with computed tomography (CT) data of liver models by assessment of the target registration error (TRE) of markers introduced in the livers.

RESULTS

For the inspected distance range of up to 2 m, our calibration approach yielded a mean residual error to reference data ranging from 1.5±4.3 mm for the best camera to 7.2±11.0 mm. When compared to the data obtained from the manufacturer routines, the residual error was reduced by at least 78% from worst calibration result to most accurate manufacturer data. After registration of the CT data with the ToF data, the mean TRE ranged from 3.7±2.1 mm for point-based and 5.7±1.9 mm for surface-based registration for the best camera to 6.2±3.4 and 11.1±2.8 mm, respectively. Compared to data provided by the manufacturer, the mean TRE decreased by 8%-60% for point-based and by 18%-74% for surface-based registration.

CONCLUSIONS

Using the proposed calibration approach improved the measurement accuracy of all investigated ToF cameras. Although evaluated in the context of intraoperative image acquisition, the proposed calibration procedure can easily be applied to other medical applications using ToF cameras, such as patient positioning or respiratory motion tracking in radiotherapy.

摘要

目的

在图像引导手术(IGS)中,组织形状、运动和形态的术中图像获取是主要挑战之一。最近,飞行时间(ToF)相机已成为一种新的快速距离图像采集手段,可用于手术期间对患者解剖结构进行多模态配准。ToF 相机的主要缺点是图像采集技术中的系统误差,这会影响测量距离图像的质量。在本文中,我们提出了一种校准概念,该概念首次考虑了影响 ToF 距离图像质量的所有已知系统误差。实验室和体外实验评估了其在 IGS 中的性能。

方法

为了进行校准,首先校正与传感器相关的误差源,包括传感器温度和设置的积分时间,然后校正与场景相关的误差,这些误差被建模为距离、振幅和到相机主点的径向距离的函数。为了满足 IGS 中的高精度要求,我们使用定制的校准设备提供参考距离数据,并对相机进行校准。为了评估误差的缓解情况,将 ToF 深度校准后的剩余误差与使用几种最先进的 ToF 相机的制造商例程获得的误差进行了比较。通过评估引入肝脏的标记物的靶标注册误差(TRE),对多模态与肝脏模型的计算机断层扫描(CT)数据的配准后重建的 ToF 表面的准确性进行了研究。

结果

在所检查的 2 米距离范围内,我们的校准方法对最佳相机的参考数据的平均残余误差为 1.5±4.3mm,最差相机的残余误差为 7.2±11.0mm。与制造商例程获得的数据相比,从最差的校准结果到最准确的制造商数据,残余误差至少减少了 78%。将 CT 数据与 ToF 数据配准后,最佳相机的点配准的平均 TRE 为 3.7±2.1mm,表面配准的平均 TRE 为 5.7±1.9mm,而制造商数据的平均 TRE 分别为 6.2±3.4mm 和 11.1±2.8mm。与制造商提供的数据相比,点配准的平均 TRE 降低了 8%-60%,表面配准的平均 TRE 降低了 18%-74%。

结论

使用所提出的校准方法提高了所有研究的 ToF 相机的测量精度。虽然是在术中图像采集的背景下进行评估的,但所提出的校准程序可以很容易地应用于使用 ToF 相机的其他医学应用,例如患者定位或放射治疗中的呼吸运动跟踪。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验