Correia Carreira Sara, Walker Laura, Paul Kai, Saunders Margaret
Bristol Centre for Functional Nanomaterials, University of Bristol , Bristol , UK .
Nanotoxicology. 2015 May;9 Suppl 1:66-78. doi: 10.3109/17435390.2013.833317. Epub 2013 Sep 3.
Despite the rapid ongoing expansion in the use of nanomaterials, we still know little about their biological interaction and biodistribution within the human body. If medically relevant nanoparticles can cross specific cell barriers they may disseminate through the body beyond the original target and may reach particularly sensitive areas such as the foetus. This study utilised an in vitro barrier model of the placenta to explore toxicity, uptake and transport of iron oxide and silica nanoparticles. The findings indicate that these nanoparticles can transfer extensively across the placental barrier model but physico-chemical characteristics such as surface chemistry impact upon both uptake and transport. Iron oxide cytotoxicity was evident at lower doses and shorter exposure compared with silica and may be of clinical relevance. In vivo correlation of in vitro findings is essential but in vitro models may provide worst case-exposure estimates to help reduce the amount of testing required.
尽管纳米材料的使用正在迅速持续扩大,但我们对它们在人体内的生物相互作用和生物分布仍然知之甚少。如果与医学相关的纳米颗粒能够穿过特定的细胞屏障,它们可能会扩散到身体原本目标之外的部位,甚至可能到达特别敏感的区域,如胎儿。本研究利用胎盘的体外屏障模型来探究氧化铁和二氧化硅纳米颗粒的毒性、摄取和转运情况。研究结果表明,这些纳米颗粒能够广泛穿过胎盘屏障模型,但诸如表面化学等物理化学特性会对摄取和转运产生影响。与二氧化硅相比,较低剂量和较短暴露时间时氧化铁的细胞毒性就很明显,这可能具有临床相关性。体外研究结果与体内情况的相关性至关重要,但体外模型可以提供最坏情况下的暴露估计,以帮助减少所需的测试量。