Center for Eukaryotic Gene Regulation, Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA.
Anal Biochem. 2013 Nov 15;442(2):138-45. doi: 10.1016/j.ab.2013.07.038. Epub 2013 Aug 6.
The molecular details of how chromatin factors and enzymes interact with the nucleosome are critical to understanding fundamental genetic processes including cell division and gene regulation. A structural understanding of such processes has been hindered by the difficulty in producing diffraction-quality crystals of chromatin proteins in complex with the nucleosome. We describe here the steps used to grow crystals of the 300-kDa RCC1 chromatin factor/nucleosome core particle complex that diffract to 2.9-Å resolution. These steps include both pre- and postcrystallization strategies potentially useful to other complexes. We screened multiple variant RCC1/nucleosome core particle complexes assembled using different RCC1 homologs and deletion variants, and nucleosomes containing nucleosomal DNA with different sequences and lengths, as well as histone deletion variants. We found that using RCC1 from different species produced different crystal forms of the RCC1/nucleosome complex consistent with key crystal packing interactions mediated by RCC1. Optimization of postcrystallization soaks to dehydrate the crystals dramatically improved the diffraction quality of the RCC1/nucleosome crystal from 5.0- to 2.9-Å resolution.
染色质因子和酶与核小体相互作用的分子细节对于理解包括细胞分裂和基因调控在内的基本遗传过程至关重要。由于难以生产与核小体复合的染色质蛋白的衍射质量晶体,因此对这些过程的结构理解受到了阻碍。我们在这里描述了用于生长 300kDa RCC1 染色质因子/核小体核心颗粒复合物晶体的步骤,该晶体的分辨率达到 2.9Å。这些步骤包括预结晶和后结晶策略,这些策略对其他复合物可能有用。我们筛选了使用不同 RCC1 同源物和缺失变体组装的多种变体 RCC1/核小体核心颗粒复合物,以及含有不同序列和长度核小体 DNA 的核小体,以及组蛋白缺失变体。我们发现,使用来自不同物种的 RCC1 产生了不同的 RCC1/核小体复合物晶体形式,这与 RCC1 介导的关键晶体堆积相互作用一致。优化后结晶浸泡以显著脱水晶体,将 RCC1/核小体晶体的分辨率从 5.0Å提高到 2.9Å。