Suppr超能文献

错误增强促进慢性卒中患者上肢恢复:一项随机交叉设计研究。

Error augmentation enhancing arm recovery in individuals with chronic stroke: a randomized crossover design.

机构信息

1University of Illinois at Chicago, IL, USA.

出版信息

Neurorehabil Neural Repair. 2014 Feb;28(2):120-8. doi: 10.1177/1545968313498649. Epub 2013 Aug 8.

Abstract

BACKGROUND

Neurorehabilitation studies suggest that manipulation of error signals during practice can stimulate improvement in coordination after stroke.

OBJECTIVE

To test visual display and robotic technology that delivers augmented error signals during training, in participants with stroke.

METHODS

A total of 26 participants with chronic hemiparesis were trained with haptic (via robot-rendered forces) and graphic (via a virtual environment) distortions to amplify upper-extremity (UE) tracking error. In a randomized crossover design, the intervention was compared with an equivalent amount of practice without error augmentation (EA). Interventions involved three 45-minute sessions per week for 2 weeks, then 1 week of no treatment, and then 2 additional weeks of the alternate treatment. A therapist provided a visual cursor using a tracking device, and participants were instructed to match it with their hand. Haptic and visual EA was used with blinding of participant, therapist, technician-operator, and evaluator. Clinical measures of impairment were obtained at the beginning and end of each 2-week treatment phase as well as at 1 week and at 45 days after the last treatment.

RESULTS

Outcomes showed a small, but significant benefit to EA training over simple repetitive practice, with a mean 2-week improvement in Fugl-Meyer UE motor score of 2.08 and Wolf Motor Function Test of timed tasks of 1.48 s.

CONCLUSIONS

This interactive technology may improve UE motor recovery of stroke-related hemiparesis.

摘要

背景

神经康复研究表明,在练习过程中对错误信号进行操作可以刺激中风后协调能力的提高。

目的

测试在患有中风的参与者中进行训练时提供增强错误信号的视觉显示和机器人技术。

方法

共有 26 名患有慢性偏瘫的参与者接受了基于触觉(通过机器人产生的力)和图形(通过虚拟环境)的失真的训练,以放大上肢(UE)跟踪误差。在随机交叉设计中,将该干预措施与无错误增强(EA)的等效训练量进行比较。干预措施包括每周进行三次 45 分钟的训练,持续 2 周,然后进行 1 周的无治疗,然后再进行 2 周的交替治疗。治疗师使用跟踪设备提供视觉光标,参与者被指示用手匹配它。触觉和视觉 EA 用于参与者、治疗师、技术操作员和评估者的盲法。在每个 2 周治疗阶段的开始和结束时以及最后一次治疗后的 1 周和 45 天获得损伤的临床测量结果。

结果

结果显示,EA 训练对简单重复练习有很小但显著的益处,Fugl-Meyer UE 运动评分在 2 周内平均提高 2.08 分,Wolf 运动功能测试定时任务提高 1.48 秒。

结论

这种交互式技术可能会改善中风引起的偏瘫的 UE 运动恢复。

相似文献

2
Arm control recovery enhanced by error augmentation.通过误差增强实现手臂控制恢复能力增强。
IEEE Int Conf Rehabil Robot. 2011;2011:5975504. doi: 10.1109/ICORR.2011.5975504.

引用本文的文献

6
Frequent Error Augmentation Training in Physical Therapy Post Stroke.中风后物理治疗中的频繁错误增强训练
J Acute Care Phys Ther. 2024 Jul;15(3):65-76. doi: 10.1097/jat.0000000000000237. Epub 2024 Jun 21.
9
Evaluation of a passive wearable arm ExoNET.一款被动式可穿戴手臂外骨骼ExoNET的评估
Front Robot AI. 2024 Jul 10;11:1387177. doi: 10.3389/frobt.2024.1387177. eCollection 2024.

本文引用的文献

3
Minimal detectable change scores for the Wolf Motor Function Test.狼运动功能测试的最小可检测变化分数
Neurorehabil Neural Repair. 2009 Sep;23(7):662-7. doi: 10.1177/1545968309335975. Epub 2009 Jun 4.
9
Evaluation of randomized controlled trials.随机对照试验的评估
Circulation. 2007 Apr 3;115(13):1819-22. doi: 10.1161/CIRCULATIONAHA.106.618603.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验