Institute for Biomaterials and Biomedical Engineering, ‡Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, §Department of Electrical and Computer Engineering, Faculty of Applied Science and Engineering, and ⊥Department of Biochemistry, Faculty of Medicine, University of Toronto , Toronto, ON, Canada M5S 3M2.
ACS Nano. 2013 Sep 24;7(9):8183-9. doi: 10.1021/nn4035298. Epub 2013 Aug 19.
Rapid and direct genetic analysis of low numbers of bacteria using chip-based sensors is limited by the slow diffusion of mRNA molecules. Long incubation times are required in dilute solutions in order to collect a sufficient number of molecules at the sensor surface to generate a detectable signal. To overcome this barrier here we present an integrated device that leverages electrochemistry-driven lysis less than 50 μm away from electrochemical nucleic acid sensors to overcome this barrier. Released intracellular mRNA can diffuse the short distance to the sensors within minutes, enabling rapid and sensitive detection. We validate this strategy through direct lysis and detection of E. coli mRNA at concentrations as low as 0.4 CFU/μL in 2 min, a clinically relevant combination of speed and sensitivity for a sample-to-answer molecular analysis approach.
利用基于芯片的传感器快速直接地对少量细菌进行基因分析受到 mRNA 分子扩散缓慢的限制。为了在稀释溶液中收集足够数量的分子在传感器表面产生可检测的信号,需要长时间的孵育。为了克服这一障碍,我们在这里提出了一种集成设备,该设备利用电化学驱动的裂解,使裂解距离电化学核酸传感器小于 50μm,从而克服这一障碍。释放的细胞内 mRNA 可以在几分钟内扩散到传感器的短距离内,从而实现快速灵敏的检测。我们通过直接裂解和检测浓度低至 0.4 CFU/μL 的大肠杆菌 mRNA 在 2 分钟内验证了这一策略,这是一种样本到答案分子分析方法的速度和灵敏度的临床相关组合。