Suppr超能文献

大肠杆菌生长和形态的压力和温度依赖性:实验和随机模型。

Pressure and temperature dependence of growth and morphology of Escherichia coli: experiments and stochastic model.

机构信息

Center for Studies in Physics and Biology, Rockefeller University, New York, New York, USA.

出版信息

Biophys J. 2013 Aug 6;105(3):783-93. doi: 10.1016/j.bpj.2013.06.029.

Abstract

We have investigated the growth of Escherichia coli, a mesophilic bacterium, as a function of pressure (P) and temperature (T). Escherichia coli can grow and divide in a wide range of pressure (1-400 atm) and temperature (23-40°C). For T > 30°C, the doubling time of E. coli increases exponentially with pressure and exhibits a departure from exponential behavior at pressures between 250 and 400 atm for all the temperatures studied in our experiments. The sharp change in doubling time is followed by a sharp change in phenotypic transition of E. coli at high pressures where bacterial cells switch to an elongating cell type. We propose a model that this phenotypic change in bacteria at high pressures is an irreversible stochastic process, whereas the switching probability to elongating cell type increases with increasing pressure. The model fits well the experimental data. We discuss our experimental results in the light of structural and thus functional changes in proteins and membranes.

摘要

我们研究了中温细菌大肠杆菌的生长情况,其生长与压力(P)和温度(T)有关。大肠杆菌可以在很宽的压力(1-400 大气压)和温度(23-40°C)范围内生长和繁殖。对于 T > 30°C,大肠杆菌的倍增时间随压力呈指数增长,并在我们实验中研究的所有温度下,在 250 和 400 大气压之间的压力下表现出偏离指数行为。倍增时间的急剧变化伴随着大肠杆菌在高压下表型转变的急剧变化,此时细菌细胞转变为伸长细胞类型。我们提出了一个模型,即细菌在高压下的这种表型变化是一个不可逆的随机过程,而向伸长细胞类型的转换概率随着压力的增加而增加。该模型很好地拟合了实验数据。我们根据蛋白质和膜的结构变化,讨论了我们的实验结果。

相似文献

2
Effects of pressure and temperature on the binding of RecA protein to single-stranded DNA.
Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):19913-8. doi: 10.1073/pnas.1112646108. Epub 2011 Nov 28.
3
Dynamics of phenotypic switching of bacterial cells with temporal fluctuations in pressure.
Phys Rev E. 2018 May;97(5-1):052411. doi: 10.1103/PhysRevE.97.052411.
4
Growth, reproduction, and death rates of Escherichia coli at increased hydrostatic pressures.
J Bacteriol. 1962 Dec;84(6):1228-36. doi: 10.1128/jb.84.6.1228-1236.1962.
5
The viabilities of cells in cultures of Escherichia coli growing with formation of filaments at 6 °C.
Int J Food Microbiol. 2012 Feb 1;153(1-2):129-34. doi: 10.1016/j.ijfoodmicro.2011.10.027. Epub 2011 Nov 6.
6
Enzymatic adaptation by bacteria under pressure.
J Bacteriol. 1975 May;122(2):575-84. doi: 10.1128/jb.122.2.575-584.1975.
8
A stochastic process determines the time at which cell division begins in Escherichia coli.
J Theor Biol. 1986 Feb 7;118(3):351-65. doi: 10.1016/s0022-5193(86)80066-2.
9
Bilinear cell growth of Escherichia coli.
J Bacteriol. 1981 Nov;148(2):730-3. doi: 10.1128/jb.148.2.730-733.1981.
10
A Quantitative Model Explains Single-Cell Dynamics of the Adaptive Response in Escherichia coli.
Biophys J. 2019 Sep 17;117(6):1156-1165. doi: 10.1016/j.bpj.2019.08.009. Epub 2019 Aug 15.

引用本文的文献

1
Multilayered safety framework for living diagnostics in the colon.
Front Syst Biol. 2023 Sep 22;3:1240040. doi: 10.3389/fsysb.2023.1240040. eCollection 2023.
2
Air Temperature and Gastroenteritis Among Rohingya Populations in Bangladesh Refugee Camps.
JAMA Netw Open. 2025 Apr 1;8(4):e255768. doi: 10.1001/jamanetworkopen.2025.5768.
4
Disentangling the feedback loops driving spatial patterning in microbial communities.
NPJ Biofilms Microbiomes. 2025 Feb 20;11(1):32. doi: 10.1038/s41522-025-00666-1.
5
Growth of nonmotile stress-responsive bacteria in 3D colonies under confining pressure.
Biophys J. 2025 Mar 4;124(5):807-817. doi: 10.1016/j.bpj.2025.01.021. Epub 2025 Jan 30.
6
Energy allocation theory for bacterial growth control in and out of steady state.
bioRxiv. 2024 Jan 10:2024.01.09.574890. doi: 10.1101/2024.01.09.574890.
7
Enzyme adaptation to habitat thermal legacy shapes the thermal plasticity of marine microbiomes.
Nat Commun. 2023 Feb 24;14(1):1045. doi: 10.1038/s41467-023-36610-0.
8
The Mini Colon Model: a benchtop multi-bioreactor system to investigate the gut microbiome.
Gut Microbes. 2022 Jan-Dec;14(1):2096993. doi: 10.1080/19490976.2022.2096993.
9
Pressure and temperature dependence of fluorescence anisotropy of green fluorescent protein.
RSC Adv. 2022 Mar 21;12(14):8647-8655. doi: 10.1039/d1ra08977c. eCollection 2022 Mar 15.

本文引用的文献

1
Restricted pH ranges and reduced yields for bacterial growth under pressure.
Microb Ecol. 1974 Dec;1(1):176-89. doi: 10.1007/BF02512388.
2
Effects of pressure and temperature on the binding of RecA protein to single-stranded DNA.
Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):19913-8. doi: 10.1073/pnas.1112646108. Epub 2011 Nov 28.
3
Microbial growth at hyperaccelerations up to 403,627 x g.
Proc Natl Acad Sci U S A. 2011 May 10;108(19):7997-8002. doi: 10.1073/pnas.1018027108. Epub 2011 Apr 25.
5
Lessons in stability from thermophilic proteins.
Protein Sci. 2006 Jul;15(7):1569-78. doi: 10.1110/ps.062130306.
6
Microbial life at high temperature, the challenges, the strategies.
Cell Mol Life Sci. 2005 Dec;62(24):2974-84. doi: 10.1007/s00018-005-5251-8.
7
After 30 years of study, the bacterial SOS response still surprises us.
PLoS Biol. 2005 Jul;3(7):e255. doi: 10.1371/journal.pbio.0030255. Epub 2005 Jul 12.
8
Exploring the temperature-pressure configurational landscape of biomolecules: from lipid membranes to proteins.
Philos Trans A Math Phys Eng Sci. 2005 Feb 15;363(1827):537-62; discussion 562-3. doi: 10.1098/rsta.2004.1507.
9
Effects of high hydrostatic pressure on bacterial cytoskeleton FtsZ polymers in vivo and in vitro.
Microbiology (Reading). 2004 Jun;150(Pt 6):1965-1972. doi: 10.1099/mic.0.26962-0.
10
Psychrophilic enzymes: hot topics in cold adaptation.
Nat Rev Microbiol. 2003 Dec;1(3):200-8. doi: 10.1038/nrmicro773.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验