Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
Biophys J. 2019 Sep 17;117(6):1156-1165. doi: 10.1016/j.bpj.2019.08.009. Epub 2019 Aug 15.
DNA damage caused by alkylating chemicals induces an adaptive response in Escherichia coli that increases the tolerance of cells to further damage. Signaling of the response occurs through irreversible methylation of the Ada protein, which acts as a DNA repair protein and damage sensor. Methylated Ada induces its own gene expression through a positive feedback loop. However, random fluctuations in the abundance of Ada jeopardize the reliability of the induction signal. I developed a quantitative model to test how gene expression noise and feedback amplification affect the fidelity of the adaptive response. A remarkably simple model accurately reproduced experimental observations from single-cell measurements of gene expression dynamics in a microfluidic device. Stochastic simulations showed that delays in the adaptive response are a direct consequence of the very low number of Ada molecules present to signal DNA damage. For cells that have zero copies of Ada, response activation becomes a memoryless process that is dictated by an exponential waiting time distribution between basal Ada expression events. Experiments also confirmed the model prediction that the strength of the adaptive response drops with an increasing growth rate of cells.
烷基化化学物质造成的 DNA 损伤会引起大肠杆菌的适应性反应,从而提高细胞对进一步损伤的耐受性。该反应的信号通过 Ada 蛋白的不可逆甲基化传递,Ada 蛋白作为一种 DNA 修复蛋白和损伤传感器发挥作用。甲基化的 Ada 通过正反馈环诱导自身基因表达。然而,Ada 丰度的随机波动会危及诱导信号的可靠性。我开发了一个定量模型来测试基因表达噪声和反馈放大如何影响适应性反应的保真度。一个非常简单的模型准确地再现了通过微流控设备中单细胞基因表达动力学测量的实验观察结果。随机模拟表明,适应性反应的延迟是由于存在的 Ada 分子数量极低,无法发出 DNA 损伤信号的直接结果。对于没有 Ada 分子的细胞,响应激活成为一个无记忆的过程,由基础 Ada 表达事件之间的指数等待时间分布决定。实验还证实了模型的预测,即适应性反应的强度随细胞生长速率的增加而下降。