Bulseco Dylan A, Wolf David E
Sensor Technologies, LLC, Shrewsbury, Massachusetts, USA.
Methods Cell Biol. 2013;114:489-524. doi: 10.1016/B978-0-12-407761-4.00021-X.
This chapter describes how the microscope can be used to measure a fluorescence signal from a small, confined volume of the sample-the confocal volume-and how these measurements are used to quantitate the dynamics and complexing of molecules, the technique of fluorescence correlation spectroscopy (FCS). FCS represents a significant example of how the microscope can be used to extract information beyond the resolution limit of classical optics. FCS enables studying events at the level of single molecules. With FCS, one can measure the diffusion times and the interaction of macromolecules, the absolute concentration of fluorescently labeled particles, and the kinetics of chemical reactions. Practical applications of FCS include studies on ligand-receptor binding, protein-protein and protein-DNA interactions, and the aggregation of fluorescently labeled particles. The chapter focuses on the principles of FCS, demonstrates how FCS is used to study macromolecular interactions in solution and in living cells, and examines critical experimental parameters that must be considered. The chapter also discusses the minimum requirements for building a microscope-based FCS instrument and illustrates the key criteria for both instrument sensitivity and analysis of FCS data. It can be used to study single molecules both in solution and in living cells and can be used to monitor a variety of macromolecular interactions. When used as an in vitro technique, FCS measurements are easy to conduct and can be made on simplified instrumentation. When used in vivo on living cells, many additional factors must be considered when evaluating experimental data. Despite these concerns, FCS represents a new approach that has broad applicability for the determination of molecular stoichiometry both in vivo and in vitro for a variety of membrane and soluble receptor systems.
本章描述了如何使用显微镜测量来自样品中一个小的、受限体积(共聚焦体积)的荧光信号,以及如何利用这些测量来定量分子的动力学和络合情况,即荧光相关光谱技术(FCS)。FCS是显微镜如何用于提取超出经典光学分辨率极限信息的一个重要例子。FCS能够在单分子水平上研究事件。通过FCS,可以测量大分子的扩散时间和相互作用、荧光标记颗粒的绝对浓度以及化学反应的动力学。FCS的实际应用包括对配体 - 受体结合、蛋白质 - 蛋白质和蛋白质 - DNA相互作用以及荧光标记颗粒聚集的研究。本章重点介绍FCS的原理,展示如何使用FCS研究溶液中和活细胞中的大分子相互作用,并探讨必须考虑的关键实验参数。本章还讨论了构建基于显微镜的FCS仪器的最低要求,并说明了仪器灵敏度和FCS数据分析的关键标准。它可用于研究溶液中和活细胞中的单分子,并可用于监测各种大分子相互作用。当用作体外技术时,FCS测量易于进行,并且可以在简化的仪器上进行。当在活细胞上进行体内测量时,在评估实验数据时必须考虑许多其他因素。尽管存在这些问题,但FCS代表了一种新方法,对于体内和体外多种膜和可溶性受体系统的分子化学计量测定具有广泛的适用性。