Suppr超能文献

基于 DNA 折纸术的荧光亮度标准,用于活细胞中方便快捷的蛋白质计数。

DNA-Origami-Based Fluorescence Brightness Standards for Convenient and Fast Protein Counting in Live Cells.

机构信息

Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520, United States.

Nanobiology Institute, Yale University, West Haven, Connecticut 06516, United States.

出版信息

Nano Lett. 2020 Dec 9;20(12):8890-8896. doi: 10.1021/acs.nanolett.0c03925. Epub 2020 Nov 9.

Abstract

Fluorescence microscopy has been one of the most discovery-rich methods in biology. In the digital age, the discipline is becoming increasingly quantitative. Virtually all biological laboratories have access to fluorescence microscopes, but abilities to quantify biomolecule copy numbers are limited by the complexity and sophistication associated with current quantification methods. Here, we present DNA-origami-based fluorescence brightness standards for counting 5-300 copies of proteins in bacterial and mammalian cells, tagged with fluorescent proteins or membrane-permeable organic dyes. Compared to conventional quantification techniques, our brightness standards are robust, straightforward to use, and compatible with nearly all fluorescence imaging applications, thereby providing a practical and versatile tool to quantify biomolecules via fluorescence microscopy.

摘要

荧光显微镜一直是生物学中最富有发现的方法之一。在数字时代,该学科正变得越来越定量。几乎所有的生物实验室都可以使用荧光显微镜,但定量生物分子拷贝数的能力受到与当前定量方法相关的复杂性和复杂性的限制。在这里,我们提出了基于 DNA 折纸的荧光亮度标准品,用于在细菌和哺乳动物细胞中计数 5-300 个拷贝的带有荧光蛋白或膜通透性有机染料的蛋白质。与传统的定量技术相比,我们的亮度标准品稳定、使用简单,几乎与所有荧光成像应用兼容,因此通过荧光显微镜提供了一种实用且通用的定量生物分子的工具。

相似文献

3
Fluorescent Biosensors Based on Single-Molecule Counting.基于单分子计数的荧光生物传感器。
Acc Chem Res. 2016 Sep 20;49(9):1722-30. doi: 10.1021/acs.accounts.6b00237. Epub 2016 Sep 1.
7
Make them blink: probes for super-resolution microscopy.让它们闪烁:超分辨率显微镜探针。
Chemphyschem. 2010 Aug 23;11(12):2475-90. doi: 10.1002/cphc.201000189.

本文引用的文献

1
Retromer forms low order oligomers on supported lipid bilayers.Retromer 在支撑脂质双层上形成低阶寡聚物。
J Biol Chem. 2020 Aug 21;295(34):12305-12316. doi: 10.1074/jbc.RA120.013672. Epub 2020 Jul 10.
2
Nanoscale coupling of endocytic pit growth and stability.内吞陷坑生长和稳定性的纳米级偶联。
Sci Adv. 2019 Nov 27;5(11):eaax5775. doi: 10.1126/sciadv.aax5775. eCollection 2019 Nov.
3
Toward Absolute Molecular Numbers in DNA-PAINT.实现 DNA-PAINT 中的绝对分子数。
Nano Lett. 2019 Nov 13;19(11):8182-8190. doi: 10.1021/acs.nanolett.9b03546. Epub 2019 Oct 9.
4
Create Nanoscale Patterns with DNA Origami.用DNA折纸术创建纳米级图案。
Small. 2019 Jun;15(26):e1805554. doi: 10.1002/smll.201805554. Epub 2019 Apr 24.
5
From Flat to Curved Clathrin: Controlling a Plastic Ratchet.从平面到弯曲的网格蛋白:控制一个塑性棘轮。
Trends Cell Biol. 2019 Mar;29(3):241-256. doi: 10.1016/j.tcb.2018.12.002. Epub 2018 Dec 28.
6
Expansion microscopy: principles and uses in biological research.扩展显微镜:在生物研究中的原理和应用。
Nat Methods. 2019 Jan;16(1):33-41. doi: 10.1038/s41592-018-0219-4. Epub 2018 Dec 20.
8
On the Stability of DNA Origami Nanostructures in Low-Magnesium Buffers.在低镁缓冲液中 DNA 折纸纳米结构的稳定性。
Angew Chem Int Ed Engl. 2018 Jul 20;57(30):9470-9474. doi: 10.1002/anie.201802890. Epub 2018 Jun 19.
9
How We Make DNA Origami.我们如何制作DNA折纸。
Chembiochem. 2017 Oct 5;18(19):1873-1885. doi: 10.1002/cbic.201700377. Epub 2017 Aug 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验