Bachand Annette M, Sulsky Sandra I
Environ International Corporation, United States; Colorado State University, United States.
Regul Toxicol Pharmacol. 2013 Nov;67(2):246-51. doi: 10.1016/j.yrtph.2013.08.003. Epub 2013 Aug 8.
We developed a comprehensive, flexible dynamic model that estimates all-cause mortality for a hypothetical cohort. All model input is user-specified. In the base case, members of the cohort may be exposed to a high risk product as they age. The counterfactual scenario includes exposure to both a high risk and a lower risk product. The model sorts the population into age and exposure categories, and applies the appropriate mortality rates to each category. The model tracks individual exposure histories, and estimates, at the end of each modeled age category, the number of survivors in the two exposure scenarios (base case and counterfactual), and the difference between them. Markov Chain Monte Carlo techniques are used to estimate the variability of the results. Model output was compared against US and Swedish life tables using population-specific tobacco exposure transition probabilities derived from the literature, and it produced similar survival estimates.
我们开发了一个全面、灵活的动态模型,用于估计一个假设队列的全因死亡率。所有模型输入均由用户指定。在基础案例中,队列成员随着年龄增长可能接触高风险产品。反事实情景包括接触高风险产品和低风险产品。该模型将人群按年龄和接触类别进行分类,并对每个类别应用适当的死亡率。该模型跟踪个体接触历史,并在每个建模年龄类别结束时,估计两种接触情景(基础案例和反事实情景)下的幸存者数量以及它们之间的差异。采用马尔可夫链蒙特卡罗技术来估计结果的变异性。利用从文献中得出的特定人群烟草接触转变概率,将模型输出与美国和瑞典的生命表进行比较,结果产生了相似的生存估计值。