Suppr超能文献

自然图像序列限制动态感受野并暗示稀疏编码。

Natural image sequences constrain dynamic receptive fields and imply a sparse code.

作者信息

Häusler Chris, Susemihl Alex, Nawrot Martin P

机构信息

Neuroinformatics and Theoretical Neuroscience Group, Freie Universität Berlin, Germany; Bernstein Center for Computational Neuroscience Berlin, Germany.

出版信息

Brain Res. 2013 Nov 6;1536:53-67. doi: 10.1016/j.brainres.2013.07.056. Epub 2013 Aug 8.

Abstract

In their natural environment, animals experience a complex and dynamic visual scenery. Under such natural stimulus conditions, neurons in the visual cortex employ a spatially and temporally sparse code. For the input scenario of natural still images, previous work demonstrated that unsupervised feature learning combined with the constraint of sparse coding can predict physiologically measured receptive fields of simple cells in the primary visual cortex. This convincingly indicated that the mammalian visual system is adapted to the natural spatial input statistics. Here, we extend this approach to the time domain in order to predict dynamic receptive fields that can account for both spatial and temporal sparse activation in biological neurons. We rely on temporal restricted Boltzmann machines and suggest a novel temporal autoencoding training procedure. When tested on a dynamic multi-variate benchmark dataset this method outperformed existing models of this class. Learning features on a large dataset of natural movies allowed us to model spatio-temporal receptive fields for single neurons. They resemble temporally smooth transformations of previously obtained static receptive fields and are thus consistent with existing theories. A neuronal spike response model demonstrates how the dynamic receptive field facilitates temporal and population sparseness. We discuss the potential mechanisms and benefits of a spatially and temporally sparse representation of natural visual input.

摘要

在自然环境中,动物会经历复杂多变的视觉场景。在这种自然刺激条件下,视觉皮层中的神经元采用空间和时间上的稀疏编码。对于自然静态图像的输入场景,先前的研究表明,无监督特征学习结合稀疏编码的约束可以预测初级视觉皮层中简单细胞的生理测量感受野。这令人信服地表明,哺乳动物视觉系统适应自然空间输入统计。在此,我们将此方法扩展到时域,以预测能够解释生物神经元中空间和时间稀疏激活的动态感受野。我们依赖于时间受限玻尔兹曼机,并提出一种新颖的时间自动编码训练程序。在动态多变量基准数据集上进行测试时,该方法优于此类现有模型。在大型自然电影数据集上学习特征使我们能够为单个神经元建模时空感受野。它们类似于先前获得的静态感受野的时间平滑变换,因此与现有理论一致。一个神经元尖峰响应模型展示了动态感受野如何促进时间和群体稀疏性。我们讨论了自然视觉输入的空间和时间稀疏表示的潜在机制和益处。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验