Human Disease Immunogenetics Group, Section of Infectious Diseases and Immunity, Department of Medicine, Imperial College, Hammersmith Hospital, London, W12 0NN, UK.
Acta Neuropathol. 2013 Oct;126(4):501-15. doi: 10.1007/s00401-013-1159-9. Epub 2013 Aug 10.
Multiple sclerosis is considered a disease of complex autoimmune etiology, yet there remains a lack of consensus as to specific immune effector mechanisms. Recent analyses of experimental autoimmune encephalomyelitis, the common mouse model of multiple sclerosis, have investigated the relative contribution of Th1 and Th17 CD4 T cell subsets to initial autoimmune central nervous system (CNS) damage. However, inherent in these studies are biases influenced by the adjuvant and toxin needed to break self-tolerance. We investigated spontaneous CNS disease in a clinically relevant, humanized, T cell receptor transgenic mouse model. Mice develop spontaneous, ascending paralysis, allowing unbiased characterization of T cell immunity in an HLA-DR15-restricted T cell repertoire. Analysis of naturally progressing disease shows that IFNγ(+) cells dominate disease initiation with IL-17(+) cells apparent in affected tissue only once disease is established. Tregs accumulate in the CNS but are ultimately ineffective at halting disease progression. However, ablation of Tregs causes profound acceleration of disease, with uncontrolled infiltration of lymphocytes into the CNS. This synchronous, severe disease allows characterization of the responses that are deregulated in exacerbated disease: the correlation is with increased CNS CD4 and CD8 IFNγ responses. Recovery of the ablated Treg population halts ongoing disease progression and Tregs extracted from the central nervous system at peak disease are functionally competent to regulate myelin specific T cell responses. Thus, in a clinically relevant mouse model of MS, initial disease is IFNγ driven and the enhanced central nervous system responses unleashed through Treg ablation comprise IFNγ cytokine production by CD4 and CD8 cells, but not IL-17 responses.
多发性硬化症被认为是一种复杂的自身免疫病因的疾病,但对于特定的免疫效应机制仍缺乏共识。最近对实验性自身免疫性脑脊髓炎(多发性硬化症的常见小鼠模型)的分析研究了 Th1 和 Th17 CD4 T 细胞亚群对初始自身免疫性中枢神经系统(CNS)损伤的相对贡献。然而,这些研究存在固有偏见,受到打破自身耐受所需的佐剂和毒素的影响。我们在一种临床相关的、人源化的、T 细胞受体转基因小鼠模型中研究了自发性 CNS 疾病。这些小鼠会自发发展为进行性瘫痪,从而可以在 HLA-DR15 限制的 T 细胞库中对 T 细胞免疫进行无偏特征分析。对自然进展疾病的分析表明,IFNγ(+)细胞主导疾病的起始,IL-17(+)细胞仅在疾病确立后才出现在受影响的组织中。Tregs 会在中枢神经系统中积累,但最终无法阻止疾病的进展。然而,Tregs 的消融会导致疾病的严重加速,淋巴细胞不受控制地渗透到中枢神经系统中。这种同步的、严重的疾病允许对加重疾病中失调的反应进行特征描述:与 CNS 中 CD4 和 CD8 IFNγ 反应增加相关。消融的 Treg 群体的恢复会阻止正在进行的疾病进展,并且在疾病高峰期从中枢神经系统提取的 Tregs 具有调节髓鞘特异性 T 细胞反应的功能能力。因此,在一种临床相关的多发性硬化症小鼠模型中,初始疾病是由 IFNγ 驱动的,而通过 Treg 消融释放的增强的中枢神经系统反应包括 CD4 和 CD8 细胞产生 IFNγ 细胞因子,但不包括 IL-17 反应。