Suppr超能文献

比较专家用户启发式和整数线性规划在航母甲板作业中的性能。

Comparing the performance of expert user heuristics and an integer linear program in aircraft carrier deck operations.

出版信息

IEEE Trans Cybern. 2014 Jun;44(6):761-73. doi: 10.1109/TCYB.2013.2271694. Epub 2013 Aug 7.

Abstract

Planning operations across a number of domains can be considered as resource allocation problems with timing constraints. An unexplored instance of such a problem domain is the aircraft carrier flight deck, where, in current operations, replanning is done without the aid of any computerized decision support. Rather, veteran operators employ a set of experience-based heuristics to quickly generate new operating schedules. These expert user heuristics are neither codified nor evaluated by the United States Navy; they have grown solely from the convergent experiences of supervisory staff. As unmanned aerial vehicles (UAVs) are introduced in the aircraft carrier domain, these heuristics may require alterations due to differing capabilities. The inclusion of UAVs also allows for new opportunities for on-line planning and control, providing an alternative to the current heuristic-based replanning methodology. To investigate these issues formally, we have developed a decision support system for flight deck operations that utilizes a conventional integer linear program-based planning algorithm. In this system, a human operator sets both the goals and constraints for the algorithm, which then returns a proposed schedule for operator approval. As a part of validating this system, the performance of this collaborative human-automation planner was compared with that of the expert user heuristics over a set of test scenarios. The resulting analysis shows that human heuristics often outperform the plans produced by an optimization algorithm, but are also often more conservative.

摘要

在多个领域进行规划操作可以被视为具有时间约束的资源分配问题。这样的问题领域中一个未被探索的实例是航母飞行甲板,在当前的操作中,重新规划是在没有任何计算机化决策支持的情况下完成的。相反,经验丰富的操作人员使用一组基于经验的启发式方法来快速生成新的操作计划。这些专家用户启发式方法既没有被美国海军编纂,也没有经过评估;它们完全是从监督人员的 convergent 经验中发展而来的。随着无人机 (UAV) 在航母领域的引入,由于能力的不同,这些启发式方法可能需要进行修改。UAV 的引入还为在线规划和控制提供了新的机会,为当前基于启发式的重新规划方法提供了替代方案。为了正式研究这些问题,我们开发了一个用于飞行甲板操作的决策支持系统,该系统利用基于传统整数线性规划的规划算法。在这个系统中,操作人员为算法设置目标和约束,然后返回一个建议的计划供操作人员批准。作为验证该系统的一部分,在一组测试场景中比较了这种协作式人机规划器的性能与专家用户启发式方法的性能。分析结果表明,人类启发式方法通常优于优化算法生成的计划,但也常常更加保守。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验