Suppr超能文献

MerR 样调控子 BrlR 通过抑制 PhoPQ 来损害铜绿假单胞菌生物膜对多黏菌素的耐受性。

The MerR-like regulator BrlR impairs Pseudomonas aeruginosa biofilm tolerance to colistin by repressing PhoPQ.

机构信息

Department of Biological Sciences, Binghamton University, Binghamton, New York, USA.

出版信息

J Bacteriol. 2013 Oct;195(20):4678-88. doi: 10.1128/JB.00834-13. Epub 2013 Aug 9.

Abstract

While the MerR-like transcriptional regulator BrlR has been demonstrated to contribute to Pseudomonas aeruginosa biofilm tolerance to antimicrobial agents known as multidrug efflux pump substrates, the role of BrlR in resistance to cationic antimicrobial peptides (CAP), which is based on reduced outer membrane susceptibility, is not known. Here, we demonstrate that inactivation of brlR coincided with increased resistance of P. aeruginosa to colistin, while overexpression of brlR resulted in increased susceptibility. brlR expression correlated with reduced transcript abundances of phoP, phoQ, pmrA, pmrB, and arnC. Inactivation of pmrA and pmrB had no effect on the susceptibility of P. aeruginosa biofilms to colistin, while inactivation of phoP and phoQ rendered biofilms more susceptible than the wild type. The susceptibility phenotype of ΔphoP biofilms to colistin was comparable to that of P. aeruginosa biofilms overexpressing brlR. BrlR was found to directly bind to oprH promoter DNA of the oprH-phoPQ operon. BrlR reciprocally contributed to colistin and tobramycin resistance in P. aeruginosa PAO1 and CF clinical isolates, with overexpression of brlR resulting in increased tobramycin MICs and increased tobramycin resistance but decreased colistin MICs and increased colistin susceptibility. The opposite trend was observed upon brlR inactivation. The difference in susceptibility to colistin and tobramycin was eliminated by combination treatment of biofilms with both antibiotics. Our findings establish BrlR as an unusual member of the MerR family, as it not only functions as a multidrug transport activator, but also acts as a repressor of phoPQ expression, thus suppressing colistin resistance.

摘要

虽然 MerR 样转录调节因子 BrlR 已被证明有助于铜绿假单胞菌生物膜耐受已知的多药外排泵底物类抗生素,但 BrlR 在阳离子抗菌肽(CAP)耐药中的作用,其基于外膜易感性降低,尚不清楚。在这里,我们证明了 brlR 的失活与铜绿假单胞菌对多粘菌素的耐药性增加同时发生,而 brlR 的过表达导致了易感性增加。brlR 的表达与 phoP、phoQ、pmrA、pmrB 和 arnC 的转录丰度降低相关。pmrA 和 pmrB 的失活对铜绿假单胞菌生物膜对多粘菌素的敏感性没有影响,而 phoP 和 phoQ 的失活使生物膜比野生型更敏感。ΔphoP 生物膜对多粘菌素的敏感性表型与 brlR 过表达的铜绿假单胞菌生物膜相当。发现 BrlR 直接结合到 oprH-phoPQ 操纵子的 oprH 启动子 DNA 上。BrlR 相互作用有助于铜绿假单胞菌 PAO1 和 CF 临床分离株对多粘菌素和妥布霉素的耐药性,brlR 的过表达导致妥布霉素 MIC 增加和妥布霉素耐药性增加,但多粘菌素 MIC 降低和多粘菌素敏感性增加。brlR 失活时观察到相反的趋势。用两种抗生素联合处理生物膜消除了对多粘菌素和妥布霉素的敏感性差异。我们的研究结果确立了 BrlR 作为 MerR 家族的一个不寻常成员,因为它不仅作为一种多药转运激活剂发挥作用,而且还作为 phoPQ 表达的抑制剂,从而抑制多粘菌素耐药性。

相似文献

1
The MerR-like regulator BrlR impairs Pseudomonas aeruginosa biofilm tolerance to colistin by repressing PhoPQ.
J Bacteriol. 2013 Oct;195(20):4678-88. doi: 10.1128/JB.00834-13. Epub 2013 Aug 9.
5
The MerR-like transcriptional regulator BrlR contributes to Pseudomonas aeruginosa biofilm tolerance.
J Bacteriol. 2012 Sep;194(18):4823-36. doi: 10.1128/JB.00765-12. Epub 2012 Jun 22.
7
Mutations and expression of PmrAB and PhoPQ related with colistin resistance in Pseudomonas aeruginosa clinical isolates.
Diagn Microbiol Infect Dis. 2014 Mar;78(3):271-6. doi: 10.1016/j.diagmicrobio.2013.11.027. Epub 2013 Dec 7.
9
Elevated levels of the second messenger c-di-GMP contribute to antimicrobial resistance of Pseudomonas aeruginosa.
Mol Microbiol. 2014 May;92(3):488-506. doi: 10.1111/mmi.12587. Epub 2014 Apr 9.
10
Impact of two-component regulatory systems PhoP-PhoQ and PmrA-PmrB on colistin pharmacodynamics in Pseudomonas aeruginosa.
Antimicrob Agents Chemother. 2012 Jun;56(6):3453-6. doi: 10.1128/AAC.06380-11. Epub 2012 Apr 2.

引用本文的文献

2
FleQ finetunes the expression of a subset of BrlR-activated genes to enable antibiotic tolerance by biofilms.
J Bacteriol. 2025 May 22;207(5):e0050324. doi: 10.1128/jb.00503-24. Epub 2025 Apr 30.
3
Distinct transcriptome and traits of freshly dispersed cells.
mSphere. 2024 Dec 19;9(12):e0088424. doi: 10.1128/msphere.00884-24. Epub 2024 Nov 27.
4
Antibiotics with antibiofilm activity - rifampicin and beyond.
Front Microbiol. 2024 Aug 29;15:1435720. doi: 10.3389/fmicb.2024.1435720. eCollection 2024.
5
Antibiotic influx and efflux in Pseudomonas aeruginosa: Regulation and therapeutic implications.
Microb Biotechnol. 2024 May;17(5):e14487. doi: 10.1111/1751-7915.14487.
6
Phylogenetic Aspects of Antibiotic Resistance and Biofilm Formation of Isolated from Clinical Samples.
Can J Infect Dis Med Microbiol. 2024 Jan 13;2024:6213873. doi: 10.1155/2024/6213873. eCollection 2024.
8
Role of efflux pumps, their inhibitors, and regulators in colistin resistance.
Front Microbiol. 2023 Aug 4;14:1207441. doi: 10.3389/fmicb.2023.1207441. eCollection 2023.
9
Controlling Biofilm Development Through Cyclic di-GMP Signaling.
Adv Exp Med Biol. 2022;1386:69-94. doi: 10.1007/978-3-031-08491-1_3.
10
Search for a Shared Genetic or Biochemical Basis for Biofilm Tolerance to Antibiotics across Bacterial Species.
Antimicrob Agents Chemother. 2022 Apr 19;66(4):e0002122. doi: 10.1128/aac.00021-22. Epub 2022 Mar 10.

本文引用的文献

2
The single-nucleotide resolution transcriptome of Pseudomonas aeruginosa grown in body temperature.
PLoS Pathog. 2012 Sep;8(9):e1002945. doi: 10.1371/journal.ppat.1002945. Epub 2012 Sep 27.
3
The two-component system CprRS senses cationic peptides and triggers adaptive resistance in Pseudomonas aeruginosa independently of ParRS.
Antimicrob Agents Chemother. 2012 Dec;56(12):6212-22. doi: 10.1128/AAC.01530-12. Epub 2012 Sep 24.
4
PAS domain residues and prosthetic group involved in BdlA-dependent dispersion response by Pseudomonas aeruginosa biofilms.
J Bacteriol. 2012 Nov;194(21):5817-28. doi: 10.1128/JB.00780-12. Epub 2012 Aug 24.
5
The MerR-like transcriptional regulator BrlR contributes to Pseudomonas aeruginosa biofilm tolerance.
J Bacteriol. 2012 Sep;194(18):4823-36. doi: 10.1128/JB.00765-12. Epub 2012 Jun 22.
6
Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria.
Science. 2011 Nov 18;334(6058):982-6. doi: 10.1126/science.1211037.
7
Pseudomonas aeruginosa: resistance to the max.
Front Microbiol. 2011 Apr 5;2:65. doi: 10.3389/fmicb.2011.00065. eCollection 2011.
8
Probing prokaryotic social behaviors with bacterial "lobster traps".
mBio. 2010 Oct 12;1(4):e00202-10. doi: 10.1128/mBio.00202-10.
9
Colistin-tobramycin combinations are superior to monotherapy concerning the killing of biofilm Pseudomonas aeruginosa.
J Infect Dis. 2010 Nov 15;202(10):1585-92. doi: 10.1086/656788. Epub 2010 Oct 13.
10
Parallel evolution in Pseudomonas aeruginosa over 39,000 generations in vivo.
mBio. 2010 Sep 21;1(4):e00199-10. doi: 10.1128/mBio.00199-10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验